Neighborhood semantics for modal many-valued logics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00480886" target="_blank" >RIV/67985556:_____/18:00480886 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/18:00480886
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.fss.2017.10.009" target="_blank" >http://dx.doi.org/10.1016/j.fss.2017.10.009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2017.10.009" target="_blank" >10.1016/j.fss.2017.10.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neighborhood semantics for modal many-valued logics
Popis výsledku v původním jazyce
The majority of works on modal many-valued logics consider Kripke-style possible worlds frames as the principal semantics despite their well-known axiomatizability issues when considering non-Boolean accessibility relations. The present work explores a more general semantical picture, namely a many-valued version of the classical neighborhood semantics. We present it in two levels of generality. First, we work with modal languages containing only the two usual unary modalities, define neighborhood frames over algebras of the logic FLew with operators, and show their relation with the usual Kripke semantics (this is actually the highest level of generality where one can give a straightforward definition of the Kripke-style semantics). Second, we define generalized neighborhood frames for arbitrary modal languages over a given class of algebras for an arbitrary protoalgebraic logic and, assuming certain additional conditions, axiomatize the logic of all such frames (which generalizes the completeness theorem of the classical modal logic E with respect to classical neighborhood frames).
Název v anglickém jazyce
Neighborhood semantics for modal many-valued logics
Popis výsledku anglicky
The majority of works on modal many-valued logics consider Kripke-style possible worlds frames as the principal semantics despite their well-known axiomatizability issues when considering non-Boolean accessibility relations. The present work explores a more general semantical picture, namely a many-valued version of the classical neighborhood semantics. We present it in two levels of generality. First, we work with modal languages containing only the two usual unary modalities, define neighborhood frames over algebras of the logic FLew with operators, and show their relation with the usual Kripke semantics (this is actually the highest level of generality where one can give a straightforward definition of the Kripke-style semantics). Second, we define generalized neighborhood frames for arbitrary modal languages over a given class of algebras for an arbitrary protoalgebraic logic and, assuming certain additional conditions, axiomatize the logic of all such frames (which generalizes the completeness theorem of the classical modal logic E with respect to classical neighborhood frames).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF15-34650L" target="_blank" >GF15-34650L: Modelování vágních kvantifikátorů v matematické fuzzy logice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Svazek periodika
345
Číslo periodika v rámci svazku
15 August
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
99-112
Kód UT WoS článku
000436569200006
EID výsledku v databázi Scopus
2-s2.0-85031759745