Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Toward a general frame semantics for modal many-valued logics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00491819" target="_blank" >RIV/67985556:_____/19:00491819 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985807:_____/19:00491819

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s00500-018-3369-5" target="_blank" >http://dx.doi.org/10.1007/s00500-018-3369-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00500-018-3369-5" target="_blank" >10.1007/s00500-018-3369-5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Toward a general frame semantics for modal many-valued logics

  • Popis výsledku v původním jazyce

    Frame semantics, given by Kripke or neighborhood frames, do not give completeness theorems for all modal logics extending, respectively, K and E. Such shortcoming can be overcome by means of general frames, i.e., frames equipped with a collection of admissible sets of worlds (which is the range of possible valuations over such frame). We export this approach from the classical paradigm to modal many-valued logics by defining general A-frames over a given residuated lattice AA (i.e., the usual frames with a collection of admissible A-valued sets). We describe in detail the relation between general Kripke and neighborhood A-frames and prove that, if the logic of A is finitary, all extensions of the corresponding logic E of A are complete w.r.t. general neighborhood frames. Our work provides a new approach to the current research trend of generalizing relational semantics for non-classical modal logics to circumvent axiomatization problems.

  • Název v anglickém jazyce

    Toward a general frame semantics for modal many-valued logics

  • Popis výsledku anglicky

    Frame semantics, given by Kripke or neighborhood frames, do not give completeness theorems for all modal logics extending, respectively, K and E. Such shortcoming can be overcome by means of general frames, i.e., frames equipped with a collection of admissible sets of worlds (which is the range of possible valuations over such frame). We export this approach from the classical paradigm to modal many-valued logics by defining general A-frames over a given residuated lattice AA (i.e., the usual frames with a collection of admissible A-valued sets). We describe in detail the relation between general Kripke and neighborhood A-frames and prove that, if the logic of A is finitary, all extensions of the corresponding logic E of A are complete w.r.t. general neighborhood frames. Our work provides a new approach to the current research trend of generalizing relational semantics for non-classical modal logics to circumvent axiomatization problems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-04630S" target="_blank" >GA17-04630S: Predikátové škálované logiky a jejich aplikace v informatice</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Soft Computing

  • ISSN

    1432-7643

  • e-ISSN

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    9

  • Strana od-do

    2233-2241

  • Kód UT WoS článku

    000461580400009

  • EID výsledku v databázi Scopus

    2-s2.0-85049671436