An online estimation of driving style using data-dependent pointer model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00481220" target="_blank" >RIV/67985556:_____/18:00481220 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.trc.2017.11.001" target="_blank" >http://dx.doi.org/10.1016/j.trc.2017.11.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.trc.2017.11.001" target="_blank" >10.1016/j.trc.2017.11.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An online estimation of driving style using data-dependent pointer model
Popis výsledku v původním jazyce
The paper focuses on a task of stochastic modeling the driving style and its online estimation while driving. The driving style is modeled by means of a mixture model with normal and categorical components as well as a data-dependent pointer. The main contributions of the presented approach are: (i) the online estimation of the driving style while driving, taking into account data up to the current time instant, (ii) the joint model for continuous and discrete data measured on a vehicle, (iii) the data-dependent model of the driving style conditioned by the values of fuel consumption, (iv) the use of the model both for detection of clusters according to the driving style and prediction of the fuel consumption along with other variables, and (v) the universal modeling with the help of mixtures, which allows us to use different combinations of components and pointer models as well as to specify the initialization approach suitable for the considered problem.
Název v anglickém jazyce
An online estimation of driving style using data-dependent pointer model
Popis výsledku anglicky
The paper focuses on a task of stochastic modeling the driving style and its online estimation while driving. The driving style is modeled by means of a mixture model with normal and categorical components as well as a data-dependent pointer. The main contributions of the presented approach are: (i) the online estimation of the driving style while driving, taking into account data up to the current time instant, (ii) the joint model for continuous and discrete data measured on a vehicle, (iii) the data-dependent model of the driving style conditioned by the values of fuel consumption, (iv) the use of the model both for detection of clusters according to the driving style and prediction of the fuel consumption along with other variables, and (v) the universal modeling with the help of mixtures, which allows us to use different combinations of components and pointer models as well as to specify the initialization approach suitable for the considered problem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-03564S" target="_blank" >GA15-03564S: Shlukování a klasifikace s využitím rekurzivního odhadování modelu směsi distribucí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Transportation Research. Part C: Emerging Technologies
ISSN
0968-090X
e-ISSN
—
Svazek periodika
86
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
23-36
Kód UT WoS článku
000425566000002
EID výsledku v databázi Scopus
2-s2.0-85033590254