Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the existence of minimisers for strain-gradient single-crystal plasticity

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00481468" target="_blank" >RIV/67985556:_____/18:00481468 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1002/zamm.201700032" target="_blank" >http://dx.doi.org/10.1002/zamm.201700032</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/zamm.201700032" target="_blank" >10.1002/zamm.201700032</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the existence of minimisers for strain-gradient single-crystal plasticity

  • Popis výsledku v původním jazyce

    We prove the existence of minimisers for a family of models related to the single-slip-to-single-plane relaxation of single-crystal, strain-gradient elastoplasticity with L p -hardening penalty. In these relaxed models, where only one slip-plane normal can be activated at each material point, the main challenge is to show that the energy of geometrically necessary dislocations is lower-semicontinuous along bounded-energy sequences which satisfy the single-plane condition, meaning precisely that this side condition should be preserved in the weak L p -limit. This is done with the aid of an ‘exclusion’ lemma of Conti & Ortiz, which essentially allows one to put a lower bound on the dislocation energy at interfaces of (single-plane) slip patches, thus precluding fine phase-mixing in the limit. Furthermore, using div-curl techniques in the spirit of Mielke & Müller, we are able to show that the usual multiplicative decomposition of the deformation gradient into plastic and elastic parts interacts with weak convergence and the single-plane constraint in such a way as to guarantee lower-semicontinuityo fthe(polyconvex)elasticenergy,andhencethetotalelasto-plasticenergy, givensufficient(p > 2) hardening, thus delivering the desired result.

  • Název v anglickém jazyce

    On the existence of minimisers for strain-gradient single-crystal plasticity

  • Popis výsledku anglicky

    We prove the existence of minimisers for a family of models related to the single-slip-to-single-plane relaxation of single-crystal, strain-gradient elastoplasticity with L p -hardening penalty. In these relaxed models, where only one slip-plane normal can be activated at each material point, the main challenge is to show that the energy of geometrically necessary dislocations is lower-semicontinuous along bounded-energy sequences which satisfy the single-plane condition, meaning precisely that this side condition should be preserved in the weak L p -limit. This is done with the aid of an ‘exclusion’ lemma of Conti & Ortiz, which essentially allows one to put a lower bound on the dislocation energy at interfaces of (single-plane) slip patches, thus precluding fine phase-mixing in the limit. Furthermore, using div-curl techniques in the spirit of Mielke & Müller, we are able to show that the usual multiplicative decomposition of the deformation gradient into plastic and elastic parts interacts with weak convergence and the single-plane constraint in such a way as to guarantee lower-semicontinuityo fthe(polyconvex)elasticenergy,andhencethetotalelasto-plasticenergy, givensufficient(p > 2) hardening, thus delivering the desired result.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik

  • ISSN

    0044-2267

  • e-ISSN

  • Svazek periodika

    98

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    17

  • Strana od-do

    431-447

  • Kód UT WoS článku

    000427147300005

  • EID výsledku v databázi Scopus

    2-s2.0-85043467628