Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

BTF Compound Texture Model with Non-Parametric Control Field

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00492500" target="_blank" >RIV/67985556:_____/18:00492500 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/ICPR.2018.8545322" target="_blank" >http://dx.doi.org/10.1109/ICPR.2018.8545322</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICPR.2018.8545322" target="_blank" >10.1109/ICPR.2018.8545322</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    BTF Compound Texture Model with Non-Parametric Control Field

  • Popis výsledku v původním jazyce

    This paper introduces a novel multidimensional statistical model for realistic modeling, enlargement, editing, and compression of the recent state-of-the-art bidirectional texture function (BTF) textural representation. The presented multispectral compound Markov random field model (CMRF) efficiently fuses a non-parametric random field model with several parametric random fields models. The primary purpose of our modeling texture approach is to reproduce, compress, and enlarge a given measured natural or artificial texture image so that ideally both natural and synthetic texture will be visually indiscernible for any observation or illumination directions. However, the model can be easily applied for BFT material texture editing as well. The CMRF model consists of several parametric sub-models each having different characteristics along with an underlying switching structure model which controls transitions between these submodels. The proposed model uses the non-parametric random field for distributing local texture models in the form of analytically solvable wide-sense BTF Markov representation for single regions among the fields of a mosaic approximated by the random field structure model. The non-parametric control field of BTF-CMRF is reiteratively generated to guarantee identical region-size histograms for all material sub-classes present in the target example texture. The local texture regions (not necessarily continuous) are represented by analytical BTF models modeled by the adaptive 3D causal auto-regressive (3DCAR) random field model which can be analytically estimated as well as synthesized. The visual quality of the resulting complex synthetic textures generally surpasses the outputs of the previously published simpler non-compound BTF-MRF models. The model allows reaching huge compression ratio incomparable with any standard image compression method.n

  • Název v anglickém jazyce

    BTF Compound Texture Model with Non-Parametric Control Field

  • Popis výsledku anglicky

    This paper introduces a novel multidimensional statistical model for realistic modeling, enlargement, editing, and compression of the recent state-of-the-art bidirectional texture function (BTF) textural representation. The presented multispectral compound Markov random field model (CMRF) efficiently fuses a non-parametric random field model with several parametric random fields models. The primary purpose of our modeling texture approach is to reproduce, compress, and enlarge a given measured natural or artificial texture image so that ideally both natural and synthetic texture will be visually indiscernible for any observation or illumination directions. However, the model can be easily applied for BFT material texture editing as well. The CMRF model consists of several parametric sub-models each having different characteristics along with an underlying switching structure model which controls transitions between these submodels. The proposed model uses the non-parametric random field for distributing local texture models in the form of analytically solvable wide-sense BTF Markov representation for single regions among the fields of a mosaic approximated by the random field structure model. The non-parametric control field of BTF-CMRF is reiteratively generated to guarantee identical region-size histograms for all material sub-classes present in the target example texture. The local texture regions (not necessarily continuous) are represented by analytical BTF models modeled by the adaptive 3D causal auto-regressive (3DCAR) random field model which can be analytically estimated as well as synthesized. The visual quality of the resulting complex synthetic textures generally surpasses the outputs of the previously published simpler non-compound BTF-MRF models. The model allows reaching huge compression ratio incomparable with any standard image compression method.n

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    The 24th International Conference on Pattern Recognition (ICPR 2018)

  • ISBN

    978-1-5386-3787-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    1151-1156

  • Název nakladatele

    IEEE

  • Místo vydání

    New York

  • Místo konání akce

    Beijing

  • Datum konání akce

    20. 8. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000455146801028