Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Source term estimation of multi-specie atmospheric release of radiation from gamma dose rates

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00493137" target="_blank" >RIV/67985556:_____/18:00493137 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1002/qj.3403" target="_blank" >http://dx.doi.org/10.1002/qj.3403</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/qj.3403" target="_blank" >10.1002/qj.3403</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Source term estimation of multi-specie atmospheric release of radiation from gamma dose rates

  • Popis výsledku v původním jazyce

    Determination of a source term of an accidental release of radioactive material into the atmosphere is very important for evaluating emergency situations and their consequences. However, knowledge of the source term and its composition is typically vague and uncertain. One possible way to obtain the source term is inverse modeling in which an atmospheric transport model is combined with field measurements. The most accessible measurements are those from gamma dose rate (GDR) detectors. However, GDR measurements represent a sum of contribution from all nuclides from both plume and deposition which makes the problem particularly difficult. The same difficulty arises when the measurements can not distinguish contribution from another species in the release, such as nuclides attached to different particle sizes. We propose a Bayesian method for recovery of the source term from GDR measurements where a priori knowledge on ratios of different species is given in the form of bounds. This knowledge is incorporated into the model of covariance matrix of the source term. The Bayesian methodology allows to handle uncertain knowledge on the nuclide ratios as well as unknown temporal correlations of the source term. We evaluate and compare the proposed method with other state-of-the-art methods on a twin experiment of a non-stationary release of 16 nuclides from the Czech nuclear power plant Temelin being registered by the Austrian GDR monitoring network. Real-world validation of the approach is performed on the latest measurements of concentration and deposition of caesium-137 from the Chernobyl accident, where we estimate composition of the source term from different particle sizes (species). The estimated source term is in very good agreement with previously reported results and the calculated species ratios are supported by the available observations.

  • Název v anglickém jazyce

    Source term estimation of multi-specie atmospheric release of radiation from gamma dose rates

  • Popis výsledku anglicky

    Determination of a source term of an accidental release of radioactive material into the atmosphere is very important for evaluating emergency situations and their consequences. However, knowledge of the source term and its composition is typically vague and uncertain. One possible way to obtain the source term is inverse modeling in which an atmospheric transport model is combined with field measurements. The most accessible measurements are those from gamma dose rate (GDR) detectors. However, GDR measurements represent a sum of contribution from all nuclides from both plume and deposition which makes the problem particularly difficult. The same difficulty arises when the measurements can not distinguish contribution from another species in the release, such as nuclides attached to different particle sizes. We propose a Bayesian method for recovery of the source term from GDR measurements where a priori knowledge on ratios of different species is given in the form of bounds. This knowledge is incorporated into the model of covariance matrix of the source term. The Bayesian methodology allows to handle uncertain knowledge on the nuclide ratios as well as unknown temporal correlations of the source term. We evaluate and compare the proposed method with other state-of-the-art methods on a twin experiment of a non-stationary release of 16 nuclides from the Czech nuclear power plant Temelin being registered by the Austrian GDR monitoring network. Real-world validation of the approach is performed on the latest measurements of concentration and deposition of caesium-137 from the Chernobyl accident, where we estimate composition of the source term from different particle sizes (species). The estimated source term is in very good agreement with previously reported results and the calculated species ratios are supported by the available observations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/7F14287" target="_blank" >7F14287: Source-Term Determination of Radionuclide Releases by Inverse Atmospheric Dispersion Modelling (STRADI)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Quarterly Journal of the Royal Meteorological Society

  • ISSN

    0035-9009

  • e-ISSN

  • Svazek periodika

    144

  • Číslo periodika v rámci svazku

    717

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    20

  • Strana od-do

    2781-2797

  • Kód UT WoS článku

    000455586500026

  • EID výsledku v databázi Scopus

    2-s2.0-85057047981