Efficient implementation of compositional models for data mining
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00497540" target="_blank" >RIV/67985556:_____/18:00497540 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient implementation of compositional models for data mining
Popis výsledku v původním jazyce
A compositional model encodes probabilistic relationships among variables of interest. In connection with various statistical techniques, it represents a practical tool for data modeling and data mining. Structure of the model represents (un)conditional independencies among all variables. Relationships of dependent variables are described by low-dimensional probability distributions. Having a compositional model, a data miner can easily apply an intervention on variables of interest, fix values of other variables (conditioning), or to narrow the context of a problem (marginalization). The model learning process can be controlled to avoid overfitting of data.nnIn this paper, we present a new semi-supervised web application that will enable researchers to design probabilistic (compositional) models (both causal and stochastic). Thanks to the web architecture of the system, the researchers will always have a possibility to influence the data-based model construction process from any place of the world. It is also expected that the application of this methodology to practical problems will open new problems that will be an inspiration for further theoretical research.
Název v anglickém jazyce
Efficient implementation of compositional models for data mining
Popis výsledku anglicky
A compositional model encodes probabilistic relationships among variables of interest. In connection with various statistical techniques, it represents a practical tool for data modeling and data mining. Structure of the model represents (un)conditional independencies among all variables. Relationships of dependent variables are described by low-dimensional probability distributions. Having a compositional model, a data miner can easily apply an intervention on variables of interest, fix values of other variables (conditioning), or to narrow the context of a problem (marginalization). The model learning process can be controlled to avoid overfitting of data.nnIn this paper, we present a new semi-supervised web application that will enable researchers to design probabilistic (compositional) models (both causal and stochastic). Thanks to the web architecture of the system, the researchers will always have a possibility to influence the data-based model construction process from any place of the world. It is also expected that the application of this methodology to practical problems will open new problems that will be an inspiration for further theoretical research.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-12010S" target="_blank" >GA16-12010S: Struktury podmíněné nezávislosti: kombinatorické a optimalizační metody</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 21st Czech-Japan Seminar od Data Analysis and Decision Making
ISBN
978-80-7464-932-5
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
80-87
Název nakladatele
Aoyama Gakuin University, Japan
Místo vydání
Japan
Místo konání akce
Kamakura
Datum konání akce
23. 11. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—