Nonparametric Bootstrap Techniques for Implicitly Weighted Robust Estimators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00506936" target="_blank" >RIV/67985556:_____/18:00506936 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/18:00497296
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nonparametric Bootstrap Techniques for Implicitly Weighted Robust Estimators
Popis výsledku v původním jazyce
The paper is devoted to highly robust statistical estimators based on implicit weighting, which have a potential to find econometric applications. Two particular methods include a robust correlation coefficient based on the least weighted squares regression and the minimum weighted covariance determinant estimator, where the latter allows to estimate the mean and covariance matrix of multivariate data. New tools are proposed allowing to test hypotheses about these robust estimators or to estimate their variance. The techniques considered in the paper include resampling approaches with or without replacement, i.e. permutation tests, bootstrap variance estimation, and bootstrap confidence intervals. The performance of the newly described tools is illustrated on numerical examples. They reveal the suitability of the robust procedures also for non-contaminated data, as their confidence intervals are not much wider compared to those for standard maximum likelihood estimators. While resampling without replacement turns out to be more suitable for hypothesis testing, bootstrapping with replacement yields reliable confidence intervals but not corresponding hypothesis tests.
Název v anglickém jazyce
Nonparametric Bootstrap Techniques for Implicitly Weighted Robust Estimators
Popis výsledku anglicky
The paper is devoted to highly robust statistical estimators based on implicit weighting, which have a potential to find econometric applications. Two particular methods include a robust correlation coefficient based on the least weighted squares regression and the minimum weighted covariance determinant estimator, where the latter allows to estimate the mean and covariance matrix of multivariate data. New tools are proposed allowing to test hypotheses about these robust estimators or to estimate their variance. The techniques considered in the paper include resampling approaches with or without replacement, i.e. permutation tests, bootstrap variance estimation, and bootstrap confidence intervals. The performance of the newly described tools is illustrated on numerical examples. They reveal the suitability of the robust procedures also for non-contaminated data, as their confidence intervals are not much wider compared to those for standard maximum likelihood estimators. While resampling without replacement turns out to be more suitable for hypothesis testing, bootstrapping with replacement yields reliable confidence intervals but not corresponding hypothesis tests.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 12th International Days of Statistics and Economics Conference Proceedings
ISBN
978-80-87990-14-8
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
770-779
Název nakladatele
Melandrium
Místo vydání
Slaný
Místo konání akce
Prague
Datum konání akce
6. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000455809400077