Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Monte Carlo-Based Identification Strategies for State-Space Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00505335" target="_blank" >RIV/67985556:_____/19:00505335 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Monte Carlo-Based Identification Strategies for State-Space Models

  • Popis výsledku v původním jazyce

    State-space models are immensely useful in various areas of science and engineering. Their attractiveness results mainly from the fact that they provide a generic tool for describing a wide range of real-world dynamical systems. However, owing to their generality, the associated state and parameter inference objectives are analytically intractable in most practical cases. The present thesis considers two particularly important classes of nonlinear and non-Gaussian state-space models: conditionally conjugate state-space models and jump Markov nonlinear models. A key feature of these models lies in that---despite their intractability---they comprise a tractable substructure. The intractable part requires us to utilize approximate techniques. Monte Carlo computational methods constitute a theoretically and practically well-established tool to address this problem. The advantage of these models is that the tractable part can be exploited to increase the efficiency of Monte Carlo methods by resorting to the Rao-Blackwellization. Specifically, this thesis proposes two Rao-Blackwellized particle filters for identification of either static or time-varying parameters in conditionally conjugate state-space models. Furthermore, this work adopts recent particle Markov chain Monte Carlo methodology to design Rao-Blackwellized particle Gibbs kernels for state smoothing in jump Markov nonlinear models. The kernels are then used to facilitate maximum likelihood parameter inference in the considered models. The resulting experiments demonstrate that the proposed algorithms outperform related techniques in terms of the estimation precision and computational time.

  • Název v anglickém jazyce

    Monte Carlo-Based Identification Strategies for State-Space Models

  • Popis výsledku anglicky

    State-space models are immensely useful in various areas of science and engineering. Their attractiveness results mainly from the fact that they provide a generic tool for describing a wide range of real-world dynamical systems. However, owing to their generality, the associated state and parameter inference objectives are analytically intractable in most practical cases. The present thesis considers two particularly important classes of nonlinear and non-Gaussian state-space models: conditionally conjugate state-space models and jump Markov nonlinear models. A key feature of these models lies in that---despite their intractability---they comprise a tractable substructure. The intractable part requires us to utilize approximate techniques. Monte Carlo computational methods constitute a theoretically and practically well-established tool to address this problem. The advantage of these models is that the tractable part can be exploited to increase the efficiency of Monte Carlo methods by resorting to the Rao-Blackwellization. Specifically, this thesis proposes two Rao-Blackwellized particle filters for identification of either static or time-varying parameters in conditionally conjugate state-space models. Furthermore, this work adopts recent particle Markov chain Monte Carlo methodology to design Rao-Blackwellized particle Gibbs kernels for state smoothing in jump Markov nonlinear models. The kernels are then used to facilitate maximum likelihood parameter inference in the considered models. The resulting experiments demonstrate that the proposed algorithms outperform related techniques in terms of the estimation precision and computational time.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-15970S" target="_blank" >GA18-15970S: Optimální zpracování externí stochastické znalosti vyjádřené pomocí pravděpodobnostních distribucí</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů