A Rao-Blackwellized particle filter to estimate the time-varying noise parameters in non-linear state-space models using alternative stabilized forgetting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU122022" target="_blank" >RIV/00216305:26220/16:PU122022 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ISSPIT.2016.7886040" target="_blank" >http://dx.doi.org/10.1109/ISSPIT.2016.7886040</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISSPIT.2016.7886040" target="_blank" >10.1109/ISSPIT.2016.7886040</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Rao-Blackwellized particle filter to estimate the time-varying noise parameters in non-linear state-space models using alternative stabilized forgetting
Popis výsledku v původním jazyce
The identification of slowly-varying noise parameters in non-linear state-space models constitutes a long-standing problem. The present paper addresses this task using the Bayesian framework and sequential Monte Carlo (SMC) methodology. The proposed approach utilizes an algebraic structure of the model so that the Rao-Blackwellization of the parameters can be performed, thus involving a finite-dimensional sufficient statistic for each particle trajectory into the resulting algorithm. However, relying on standard SMC methods, such techniques are known to suffer from the particle path degeneracy problem. To counteract this issue, it is proposed to use alternative stabilized forgetting, which compensates for the incomplete knowledge of a model of parameter variations by finding a compromise between possible predictive densities of the parameters. An experimental study proves the efficiency of the introduced Rao-Blackwellized particle filter (RBPF) compared to some recently proposed approaches.
Název v anglickém jazyce
A Rao-Blackwellized particle filter to estimate the time-varying noise parameters in non-linear state-space models using alternative stabilized forgetting
Popis výsledku anglicky
The identification of slowly-varying noise parameters in non-linear state-space models constitutes a long-standing problem. The present paper addresses this task using the Bayesian framework and sequential Monte Carlo (SMC) methodology. The proposed approach utilizes an algebraic structure of the model so that the Rao-Blackwellization of the parameters can be performed, thus involving a finite-dimensional sufficient statistic for each particle trajectory into the resulting algorithm. However, relying on standard SMC methods, such techniques are known to suffer from the particle path degeneracy problem. To counteract this issue, it is proposed to use alternative stabilized forgetting, which compensates for the incomplete knowledge of a model of parameter variations by finding a compromise between possible predictive densities of the parameters. An experimental study proves the efficiency of the introduced Rao-Blackwellized particle filter (RBPF) compared to some recently proposed approaches.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 16th International Symposium on Signal Processing and Information Technology, ISSPIT 2016
ISBN
978-1-5090-5844-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
229-234
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Limassol
Místo konání akce
Limassol
Datum konání akce
12. 12. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000406122500042