Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Modeling of passenger demand using mixture of Poisson components

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00507178" target="_blank" >RIV/67985556:_____/19:00507178 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21260/19:00332693

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Modeling of passenger demand using mixture of Poisson components

  • Popis výsledku v původním jazyce

    The paper deals with the problem of modeling the passenger demand in the tram transportation network. The passenger demand on the individual tram stops is naturally influenced by the number of boarding and disembarking passengers, whose measuring is expensive and therefore they should be modeled and predicted. A mixture of Poisson components with the dynamic pointer estimated by recursive Bayesian estimation algorithms is used to describe the mentioned variables, while their prediction is solved with the help of the Poisson regression. The main contributions of the presented approach are: (i) the model of the number of boarding and disembarking passengers. (ii) the real-time data incorporation into the model. (iii) the recursive estimation algorithm with the normal approximation of the proximity function. The results of experiments with real data and the comparison with theoretical counterparts are demonstrated.

  • Název v anglickém jazyce

    Modeling of passenger demand using mixture of Poisson components

  • Popis výsledku anglicky

    The paper deals with the problem of modeling the passenger demand in the tram transportation network. The passenger demand on the individual tram stops is naturally influenced by the number of boarding and disembarking passengers, whose measuring is expensive and therefore they should be modeled and predicted. A mixture of Poisson components with the dynamic pointer estimated by recursive Bayesian estimation algorithms is used to describe the mentioned variables, while their prediction is solved with the help of the Poisson regression. The main contributions of the presented approach are: (i) the model of the number of boarding and disembarking passengers. (ii) the real-time data incorporation into the model. (iii) the recursive estimation algorithm with the normal approximation of the proximity function. The results of experiments with real data and the comparison with theoretical counterparts are demonstrated.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/8A17006" target="_blank" >8A17006: (Ultra)Sound Interfaces and Low Energy iNtegrated SEnsors</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2019)

  • ISBN

    978-989-758-380-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    617-624

  • Název nakladatele

    SCITEPRESS

  • Místo vydání

    Setubal

  • Místo konání akce

    Prague

  • Datum konání akce

    29. 7. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku