Blur Invariant Template Matching Using Projection onto Convex Sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00508018" target="_blank" >RIV/67985556:_____/19:00508018 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-29888-3_28" target="_blank" >http://dx.doi.org/10.1007/978-3-030-29888-3_28</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-29888-3_28" target="_blank" >10.1007/978-3-030-29888-3_28</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Blur Invariant Template Matching Using Projection onto Convex Sets
Popis výsledku v původním jazyce
Blur is a common phenomenon in image acquisition that negatively influences recognition rate if blurred images are used as a query in template matching. Various blur-invariant features and measures were proposed in the literature, yet they are often derived under conditions that are difficult to satisfy in practise, for example, images with zero background or periodically repeating images and classes of blur that are closed under convolution.We propose a novel blur-invariant distance that puts no limitation on images and is invariant to any kind of blur as long as the blur has limited support, non-zero values and sums up to one. A template matching algorithm is then derived based on the blur-invariant distance, which projects query images on convex sets constructed around template images. The proposed method is easy to implement, it is robust to noise and blur size, and outperforms other competitors in this area.
Název v anglickém jazyce
Blur Invariant Template Matching Using Projection onto Convex Sets
Popis výsledku anglicky
Blur is a common phenomenon in image acquisition that negatively influences recognition rate if blurred images are used as a query in template matching. Various blur-invariant features and measures were proposed in the literature, yet they are often derived under conditions that are difficult to satisfy in practise, for example, images with zero background or periodically repeating images and classes of blur that are closed under convolution.We propose a novel blur-invariant distance that puts no limitation on images and is invariant to any kind of blur as long as the blur has limited support, non-zero values and sums up to one. A template matching algorithm is then derived based on the blur-invariant distance, which projects query images on convex sets constructed around template images. The proposed method is easy to implement, it is robust to noise and blur size, and outperforms other competitors in this area.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-07247S" target="_blank" >GA18-07247S: Metody a algoritmy pro analýzu obrazů vektorových a tenzorových polí</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computer Analysis of Images and Patterns : CAIP 2019 International Workshops, ViMaBi and DL-UAV, Salerno, Italy, September 6, 2019, Proceedings
ISBN
978-3-030-29929-3
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
351-362
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Salerno
Datum konání akce
2. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—