Lateral Dynamics of Walking-Like Mechanical Systems and Their Chaotic Behavior
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00508137" target="_blank" >RIV/67985556:_____/19:00508137 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.worldscientific.com/doi/10.1142/S0218127419300246" target="_blank" >https://www.worldscientific.com/doi/10.1142/S0218127419300246</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218127419300246" target="_blank" >10.1142/S0218127419300246</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lateral Dynamics of Walking-Like Mechanical Systems and Their Chaotic Behavior
Popis výsledku v původním jazyce
A detailed mathematical analysis of the two-dimensional hybrid model for the lateral dynamics of walking-like mechanical systems (the so-called hybrid inverted pendulum) is presented in this article. The chaotic behavior, when being externally harmonically perturbed, is demonstrated. Two rather exceptional features are analyzed. Firstly, the unperturbed undamped hybrid inverted pendulum behaves inside a certain stability region periodically and its respective frequencies range from zero (close to the boundary of that stability region) to infinity (close to its double support equilibrium). Secondly, the constant lateral forcing less than a certain threshold does not affect the periodic behavior of the hybrid inverted pendulum and preserves its equilibrium at the origin. The latter is due to the hybrid nature of the equilibrium at the origin, which exists only in the Filippov sense. It is actually a trivial example of the so-called pseudo-equilibrium [Kuznetsov et al., 2003]. Nevertheless, such an observation holds only for constant external forcing and even arbitrary small time-varying external forcing may destabilize the origin. As a matter of fact, one can observe many, possibly even infinitely many, distinct chaotic attractors for a single system when the forcing amplitude does not exceed the mentioned threshold. Moreover, some general properties of the hybrid inverted pendulum are characterized through its topological equivalence to the classical pendulum. Extensive numerical experiments demonstrate the chaotic behavior of the harmonically perturbed hybrid inverted pendulum.
Název v anglickém jazyce
Lateral Dynamics of Walking-Like Mechanical Systems and Their Chaotic Behavior
Popis výsledku anglicky
A detailed mathematical analysis of the two-dimensional hybrid model for the lateral dynamics of walking-like mechanical systems (the so-called hybrid inverted pendulum) is presented in this article. The chaotic behavior, when being externally harmonically perturbed, is demonstrated. Two rather exceptional features are analyzed. Firstly, the unperturbed undamped hybrid inverted pendulum behaves inside a certain stability region periodically and its respective frequencies range from zero (close to the boundary of that stability region) to infinity (close to its double support equilibrium). Secondly, the constant lateral forcing less than a certain threshold does not affect the periodic behavior of the hybrid inverted pendulum and preserves its equilibrium at the origin. The latter is due to the hybrid nature of the equilibrium at the origin, which exists only in the Filippov sense. It is actually a trivial example of the so-called pseudo-equilibrium [Kuznetsov et al., 2003]. Nevertheless, such an observation holds only for constant external forcing and even arbitrary small time-varying external forcing may destabilize the origin. As a matter of fact, one can observe many, possibly even infinitely many, distinct chaotic attractors for a single system when the forcing amplitude does not exceed the mentioned threshold. Moreover, some general properties of the hybrid inverted pendulum are characterized through its topological equivalence to the classical pendulum. Extensive numerical experiments demonstrate the chaotic behavior of the harmonically perturbed hybrid inverted pendulum.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-04682S" target="_blank" >GA17-04682S: Řízení kráčejících robotů metodou sladěných virtuálních holonomních omezení</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Bifurcation and Chaos
ISSN
0218-1274
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
29
Strana od-do
1930024
Kód UT WoS článku
000483030700001
EID výsledku v databázi Scopus
2-s2.0-85071604891