Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Lateral Dynamics of Walking-Like Mechanical Systems and Their Chaotic Behavior

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00508137" target="_blank" >RIV/67985556:_____/19:00508137 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.worldscientific.com/doi/10.1142/S0218127419300246" target="_blank" >https://www.worldscientific.com/doi/10.1142/S0218127419300246</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0218127419300246" target="_blank" >10.1142/S0218127419300246</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Lateral Dynamics of Walking-Like Mechanical Systems and Their Chaotic Behavior

  • Popis výsledku v původním jazyce

    A detailed mathematical analysis of the two-dimensional hybrid model for the lateral dynamics of walking-like mechanical systems (the so-called hybrid inverted pendulum) is presented in this article. The chaotic behavior, when being externally harmonically perturbed, is demonstrated. Two rather exceptional features are analyzed. Firstly, the unperturbed undamped hybrid inverted pendulum behaves inside a certain stability region periodically and its respective frequencies range from zero (close to the boundary of that stability region) to infinity (close to its double support equilibrium). Secondly, the constant lateral forcing less than a certain threshold does not affect the periodic behavior of the hybrid inverted pendulum and preserves its equilibrium at the origin. The latter is due to the hybrid nature of the equilibrium at the origin, which exists only in the Filippov sense. It is actually a trivial example of the so-called pseudo-equilibrium [Kuznetsov et al., 2003]. Nevertheless, such an observation holds only for constant external forcing and even arbitrary small time-varying external forcing may destabilize the origin. As a matter of fact, one can observe many, possibly even infinitely many, distinct chaotic attractors for a single system when the forcing amplitude does not exceed the mentioned threshold. Moreover, some general properties of the hybrid inverted pendulum are characterized through its topological equivalence to the classical pendulum. Extensive numerical experiments demonstrate the chaotic behavior of the harmonically perturbed hybrid inverted pendulum.

  • Název v anglickém jazyce

    Lateral Dynamics of Walking-Like Mechanical Systems and Their Chaotic Behavior

  • Popis výsledku anglicky

    A detailed mathematical analysis of the two-dimensional hybrid model for the lateral dynamics of walking-like mechanical systems (the so-called hybrid inverted pendulum) is presented in this article. The chaotic behavior, when being externally harmonically perturbed, is demonstrated. Two rather exceptional features are analyzed. Firstly, the unperturbed undamped hybrid inverted pendulum behaves inside a certain stability region periodically and its respective frequencies range from zero (close to the boundary of that stability region) to infinity (close to its double support equilibrium). Secondly, the constant lateral forcing less than a certain threshold does not affect the periodic behavior of the hybrid inverted pendulum and preserves its equilibrium at the origin. The latter is due to the hybrid nature of the equilibrium at the origin, which exists only in the Filippov sense. It is actually a trivial example of the so-called pseudo-equilibrium [Kuznetsov et al., 2003]. Nevertheless, such an observation holds only for constant external forcing and even arbitrary small time-varying external forcing may destabilize the origin. As a matter of fact, one can observe many, possibly even infinitely many, distinct chaotic attractors for a single system when the forcing amplitude does not exceed the mentioned threshold. Moreover, some general properties of the hybrid inverted pendulum are characterized through its topological equivalence to the classical pendulum. Extensive numerical experiments demonstrate the chaotic behavior of the harmonically perturbed hybrid inverted pendulum.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20204 - Robotics and automatic control

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-04682S" target="_blank" >GA17-04682S: Řízení kráčejících robotů metodou sladěných virtuálních holonomních omezení</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Bifurcation and Chaos

  • ISSN

    0218-1274

  • e-ISSN

  • Svazek periodika

    29

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    SG - Singapurská republika

  • Počet stran výsledku

    29

  • Strana od-do

    1930024

  • Kód UT WoS článku

    000483030700001

  • EID výsledku v databázi Scopus

    2-s2.0-85071604891