A Note on Approximation of Shenoy's Expectation Operator Using Probabilistic Transforms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00523947" target="_blank" >RIV/67985556:_____/20:00523947 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/03081079.2019.1692006" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/03081079.2019.1692006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03081079.2019.1692006" target="_blank" >10.1080/03081079.2019.1692006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Note on Approximation of Shenoy's Expectation Operator Using Probabilistic Transforms
Popis výsledku v původním jazyce
Recently, a new way of computing an expected value in the Dempster-Shafer theory of evidence was introduced by Prakash P. Shenoy. Up to now, when they needednthe expected value of a utility function in D-S theory, the authors usually did it indirectly: first, they found a probability measure corresponding to the considered belief function, and then computed the classical probabilistic expectation using this probability measure. To the best of our knowledge, Shenoy's operator of expectation is the first approach that takes into account all the information included in the respective belief function. Its only drawback is its exponential computational complexity. This is why, in this paper, we compare five different approaches defining probabilistic representatives of belief function from the point of view, which of them yields the best approximations of Shenoy's expected values of utility functions.
Název v anglickém jazyce
A Note on Approximation of Shenoy's Expectation Operator Using Probabilistic Transforms
Popis výsledku anglicky
Recently, a new way of computing an expected value in the Dempster-Shafer theory of evidence was introduced by Prakash P. Shenoy. Up to now, when they needednthe expected value of a utility function in D-S theory, the authors usually did it indirectly: first, they found a probability measure corresponding to the considered belief function, and then computed the classical probabilistic expectation using this probability measure. To the best of our knowledge, Shenoy's operator of expectation is the first approach that takes into account all the information included in the respective belief function. Its only drawback is its exponential computational complexity. This is why, in this paper, we compare five different approaches defining probabilistic representatives of belief function from the point of view, which of them yields the best approximations of Shenoy's expected values of utility functions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of General Systems
ISSN
0308-1079
e-ISSN
—
Svazek periodika
49
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
48-63
Kód UT WoS článku
000497900500001
EID výsledku v databázi Scopus
2-s2.0-85075433795