Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Computing the Decomposable Entropy of Graphical Belief Function Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00558135" target="_blank" >RIV/67985556:_____/22:00558135 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Computing the Decomposable Entropy of Graphical Belief Function Models

  • Popis výsledku v původním jazyce

    In 2018, Jiroušek and Shenoy proposed a definition of entropy for Dempster-Shafer (D-S) belief functions called decomposable entropy. Here, we provide an algorithm for computing the decomposable entropy of directed graphical D-S belief function models. For undirected graphical belief function models, assuming that each belief function in the model is non-informative to the others, no algorithm is necessary. We compute the entropy of each belief function and add them together to get the decomposable entropy of the model. Finally, the decomposable entropy generalizes Shannon’s entropy not only for the probability of a single random variable but also for multinomial distributions expressed as directed acyclic graphical models called Bayesian networks.

  • Název v anglickém jazyce

    Computing the Decomposable Entropy of Graphical Belief Function Models

  • Popis výsledku anglicky

    In 2018, Jiroušek and Shenoy proposed a definition of entropy for Dempster-Shafer (D-S) belief functions called decomposable entropy. Here, we provide an algorithm for computing the decomposable entropy of directed graphical D-S belief function models. For undirected graphical belief function models, assuming that each belief function in the model is non-informative to the others, no algorithm is necessary. We compute the entropy of each belief function and add them together to get the decomposable entropy of the model. Finally, the decomposable entropy generalizes Shannon’s entropy not only for the probability of a single random variable but also for multinomial distributions expressed as directed acyclic graphical models called Bayesian networks.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-04579S" target="_blank" >GA19-04579S: Struktury podmíněné nezávislosti: metody polyedrální geometrie</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 12th Workshop on Uncertainty Processing

  • ISBN

    978-80-7378-460-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

    111-122

  • Název nakladatele

    MatfyzPress

  • Místo vydání

    Prague

  • Místo konání akce

    Kutná Hora

  • Datum konání akce

    1. 6. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku