Entropy for evaluation of Dempster-Shafer belief function models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00562467" target="_blank" >RIV/67985556:_____/22:00562467 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61384399:31160/22:00058379
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0888613X22001463?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0888613X22001463?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijar.2022.09.009" target="_blank" >10.1016/j.ijar.2022.09.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Entropy for evaluation of Dempster-Shafer belief function models
Popis výsledku v původním jazyce
Applications of Dempster-Shafer (D-S) belief functions to practical problems involve difficulties arising from their high computational complexity. One can use space-saving factored approximations such as graphical belief function models to solve them. Using an analogy with probability distributions, we represent these approximations in the form of compositional models. Since no theoretical apparatus similar to probabilistic information theory exists for D-S belief functions (e. g., dissimilarity measure analogous to the Kullback-Liebler divergence measure), the problems arise not only in connection with the design of algorithms seeking optimal approximations but also in connection with a criterion comparing two different approximations. In this respect, the application of the analogy with probability theory fails. Therefore, in this paper, we conduct some synthetic experiments and describe the results designed to reveal whether some belief function entropy definitions described in the literature can detect optimal approximations, i.e., that achieve their minimum for an optimal approximation.
Název v anglickém jazyce
Entropy for evaluation of Dempster-Shafer belief function models
Popis výsledku anglicky
Applications of Dempster-Shafer (D-S) belief functions to practical problems involve difficulties arising from their high computational complexity. One can use space-saving factored approximations such as graphical belief function models to solve them. Using an analogy with probability distributions, we represent these approximations in the form of compositional models. Since no theoretical apparatus similar to probabilistic information theory exists for D-S belief functions (e. g., dissimilarity measure analogous to the Kullback-Liebler divergence measure), the problems arise not only in connection with the design of algorithms seeking optimal approximations but also in connection with a criterion comparing two different approximations. In this respect, the application of the analogy with probability theory fails. Therefore, in this paper, we conduct some synthetic experiments and describe the results designed to reveal whether some belief function entropy definitions described in the literature can detect optimal approximations, i.e., that achieve their minimum for an optimal approximation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-06569S" target="_blank" >GA19-06569S: Manažerské rozhodování: racionalita paradoxního chování</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Approximate Reasoning
ISSN
0888-613X
e-ISSN
1873-4731
Svazek periodika
151
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
164-181
Kód UT WoS článku
000876728600008
EID výsledku v databázi Scopus
2-s2.0-85138797457