Collaborative sequential state estimation under unknown heterogeneous noise covariance matrices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00532181" target="_blank" >RIV/67985556:_____/20:00532181 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9195780" target="_blank" >https://ieeexplore.ieee.org/document/9195780</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2020.3023823" target="_blank" >10.1109/TSP.2020.3023823</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Collaborative sequential state estimation under unknown heterogeneous noise covariance matrices
Popis výsledku v původním jazyce
We study the problem of distributed sequential estimation of common states and measurement noise covariance matrices of hidden Markov models by networks of collaborating nodes. We adopt a realistic assumption that the true covariance matrices are possibly different (heterogeneous) across the network. This setting is frequent in many distributed real-world systems where the sensors (e.g., radars) are deployed in a spatially anisotropic environment, or where the networks may consist of sensors with different measuring principles (e.g., using different wavelengths). Our solution is rooted in the variational Bayesian paradigm. In order to improve the estimation performance, the measurements and the posterior estimates are communicated among adjacent neighbors within one network hop distance using the information diffusion strategy. The resulting adaptive algorithm selects neighbors with compatible information to prevent degradation of estimates.
Název v anglickém jazyce
Collaborative sequential state estimation under unknown heterogeneous noise covariance matrices
Popis výsledku anglicky
We study the problem of distributed sequential estimation of common states and measurement noise covariance matrices of hidden Markov models by networks of collaborating nodes. We adopt a realistic assumption that the true covariance matrices are possibly different (heterogeneous) across the network. This setting is frequent in many distributed real-world systems where the sensors (e.g., radars) are deployed in a spatially anisotropic environment, or where the networks may consist of sensors with different measuring principles (e.g., using different wavelengths). Our solution is rooted in the variational Bayesian paradigm. In order to improve the estimation performance, the measurements and the posterior estimates are communicated among adjacent neighbors within one network hop distance using the information diffusion strategy. The resulting adaptive algorithm selects neighbors with compatible information to prevent degradation of estimates.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-27939S" target="_blank" >GA20-27939S: Bayesovské metody pro nelineární slepé inverzní úlohy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Signal Processing
ISSN
1053-587X
e-ISSN
—
Svazek periodika
68
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
5365-5378
Kód UT WoS článku
000574739900010
EID výsledku v databázi Scopus
2-s2.0-85092572093