Risk-Sensitivity and Average Optimality in Markov and Semi-Markov Reward Processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00536246" target="_blank" >RIV/67985556:_____/20:00536246 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Risk-Sensitivity and Average Optimality in Markov and Semi-Markov Reward Processes
Popis výsledku v původním jazyce
This contribution is devoted to risk-sensitivity in long-run average optimality of Markov and semi-Markov reward processes. Since the traditional average optimality criteria cannot reflect the variability-risk features of the problem, we are interested in more sophisticated approaches where the stream of rewards generated by the Markov chain that is evaluated by an exponential utility function with a given risk sensitivity coefficient. Recall that for the risk sensitivity coefficient equal to zero (i.e. the so called risk-neutral case) we arrive at traditional optimality criteria, if the risk sensitivity coefficient is close to zero the Taylor expansion enables to evaluate variability of the generated total reward. Observe that the first moment of the total reward corresponds to expectation of total reward and the second central moment to the reward variance. In this note we present necessary and sufficient risk-sensitivity and risk-neutral optimality conditions for long run risk-sensitive average optimality criterion of unichain Markov and semi-Markov reward processes.
Název v anglickém jazyce
Risk-Sensitivity and Average Optimality in Markov and Semi-Markov Reward Processes
Popis výsledku anglicky
This contribution is devoted to risk-sensitivity in long-run average optimality of Markov and semi-Markov reward processes. Since the traditional average optimality criteria cannot reflect the variability-risk features of the problem, we are interested in more sophisticated approaches where the stream of rewards generated by the Markov chain that is evaluated by an exponential utility function with a given risk sensitivity coefficient. Recall that for the risk sensitivity coefficient equal to zero (i.e. the so called risk-neutral case) we arrive at traditional optimality criteria, if the risk sensitivity coefficient is close to zero the Taylor expansion enables to evaluate variability of the generated total reward. Observe that the first moment of the total reward corresponds to expectation of total reward and the second central moment to the reward variance. In this note we present necessary and sufficient risk-sensitivity and risk-neutral optimality conditions for long run risk-sensitive average optimality criterion of unichain Markov and semi-Markov reward processes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-02739S" target="_blank" >GA18-02739S: Stochastická optimalizace v ekonomických procesech</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 38th International Conference on Mathematical Methods in Economics
ISBN
978-80-7509-734-7
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
537-543
Název nakladatele
Faculty of Business Economics, Mendel University
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
9. 9. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—