Mixture ratio modeling of dynamic systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00539397" target="_blank" >RIV/67985556:_____/21:00539397 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/acs.3219" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/acs.3219</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/acs.3219" target="_blank" >10.1002/acs.3219</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mixture ratio modeling of dynamic systems
Popis výsledku v původním jazyce
Any knowledge extraction relies (possibly implicitly) on a hypothesis about the modelled-data dependence. The extracted knowledge ultimately serves to a decision-making (DM). DM always faces uncertainty and this makes probabilistic modelling adequate. The inspected black-box modeling deals with “universal” approximators of the relevant probabilistic model. Finite mixtures with components in the exponential family are often exploited. Their attractiveness stems from their flexibility, the cluster interpretability of components and the existence of algorithms for processing high-dimensional data streams. They are even used in dynamic cases with mutually dependent data records while regression and auto-regression mixture components serve to the dependence modeling. These dynamic models, however, mostly assume data-independent component weights, that is, memoryless transitions between dynamic mixture components. Such mixtures are not universal approximators of dynamic probabilistic models. Formally, this follows from the fact that the set of finite probabilistic mixtures is not closed with respect to the conditioning, which is the key estimation and predictive operation. The paper overcomes this drawback by using ratios of finite mixtures as universally approximating dynamic parametric models. The paper motivates them, elaborates their approximate Bayesian recursive estimation and reveals their application potential.
Název v anglickém jazyce
Mixture ratio modeling of dynamic systems
Popis výsledku anglicky
Any knowledge extraction relies (possibly implicitly) on a hypothesis about the modelled-data dependence. The extracted knowledge ultimately serves to a decision-making (DM). DM always faces uncertainty and this makes probabilistic modelling adequate. The inspected black-box modeling deals with “universal” approximators of the relevant probabilistic model. Finite mixtures with components in the exponential family are often exploited. Their attractiveness stems from their flexibility, the cluster interpretability of components and the existence of algorithms for processing high-dimensional data streams. They are even used in dynamic cases with mutually dependent data records while regression and auto-regression mixture components serve to the dependence modeling. These dynamic models, however, mostly assume data-independent component weights, that is, memoryless transitions between dynamic mixture components. Such mixtures are not universal approximators of dynamic probabilistic models. Formally, this follows from the fact that the set of finite probabilistic mixtures is not closed with respect to the conditioning, which is the key estimation and predictive operation. The paper overcomes this drawback by using ratios of finite mixtures as universally approximating dynamic parametric models. The paper motivates them, elaborates their approximate Bayesian recursive estimation and reveals their application potential.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/LTC18075" target="_blank" >LTC18075: Distribuované racionální rozhodování: kooperační aspekty</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Adaptive Control and Signal Processing
ISSN
0890-6327
e-ISSN
1099-1115
Svazek periodika
35
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
660-675
Kód UT WoS článku
000616106100001
EID výsledku v databázi Scopus
2-s2.0-85100778905