An optimization problem for continuous submodular functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00540823" target="_blank" >RIV/67985556:_____/21:00540823 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.cs.ubbcluj.ro/~studia-m/index.php/journal/article/view/1152" target="_blank" >http://www.cs.ubbcluj.ro/~studia-m/index.php/journal/article/view/1152</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24193/subbmath.2021.1.17" target="_blank" >10.24193/subbmath.2021.1.17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An optimization problem for continuous submodular functions
Popis výsledku v původním jazyce
Real continuous submodular functions, as a generalization of the corresponding discrete notion to the continuous domain, gained considerable attention recently. The analog notion for entropy functions requires additional properties: a real multivariate function defined on the non-negative orthant of dimension n is entropy-like (EL) if it is submodular, takes zero at zero, non-decreasing, and has the Diminishing Returns property. Motivated by problems concerning the Shannon complexity of multipartite secret sharing, a special case of the following general optimization problem is considered: find the minimal cost of those EL functions which satisfy certain constraints. In our special case the cost of an EL function is the maximal value of the n partial derivatives at zero. Another possibility could be the supremum of the function range. The constraints are specified by a smooth bounded surface S cutting off a downward closed subset. An EL function is feasible if at the internal points of S the left and right partial derivatives of the function differ by at least one. A general lower bound for the minimal cost is given in terms of thennormals of the surface S. The bound is tight when S is linear. In the two-dimensional case the same bound is tight for convex or concave S. It is shown that the optimal EL function is not necessarily unique. The paper concludes with several open problems.
Název v anglickém jazyce
An optimization problem for continuous submodular functions
Popis výsledku anglicky
Real continuous submodular functions, as a generalization of the corresponding discrete notion to the continuous domain, gained considerable attention recently. The analog notion for entropy functions requires additional properties: a real multivariate function defined on the non-negative orthant of dimension n is entropy-like (EL) if it is submodular, takes zero at zero, non-decreasing, and has the Diminishing Returns property. Motivated by problems concerning the Shannon complexity of multipartite secret sharing, a special case of the following general optimization problem is considered: find the minimal cost of those EL functions which satisfy certain constraints. In our special case the cost of an EL function is the maximal value of the n partial derivatives at zero. Another possibility could be the supremum of the function range. The constraints are specified by a smooth bounded surface S cutting off a downward closed subset. An EL function is feasible if at the internal points of S the left and right partial derivatives of the function differ by at least one. A general lower bound for the minimal cost is given in terms of thennormals of the surface S. The bound is tight when S is linear. In the two-dimensional case the same bound is tight for convex or concave S. It is shown that the optimal EL function is not necessarily unique. The paper concludes with several open problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-04579S" target="_blank" >GA19-04579S: Struktury podmíněné nezávislosti: metody polyedrální geometrie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Studia Universitatis Babes-Bolyai Mathematica
ISSN
0252-1938
e-ISSN
2065-961X
Svazek periodika
66
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
RO - Rumunsko
Počet stran výsledku
12
Strana od-do
211-222
Kód UT WoS článku
000631641400018
EID výsledku v databázi Scopus
2-s2.0-85103502175