Fusion of Probabilistic Unreliable Indirect Information into Estimation Serving to Decision Making
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00543464" target="_blank" >RIV/67985556:_____/21:00543464 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s13042-021-01359-9" target="_blank" >https://link.springer.com/article/10.1007/s13042-021-01359-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13042-021-01359-9" target="_blank" >10.1007/s13042-021-01359-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fusion of Probabilistic Unreliable Indirect Information into Estimation Serving to Decision Making
Popis výsledku v původním jazyce
Bayesian decision making (DM) quantifies information by the probability density (pd) of treated variables. Gradual accumulation of information during acting increases the DM quality reachable by an agent exploiting it. The inspected accumulation way uses a parametric model forecasting observable DM outcomes and updates the posterior pd of its unknown parameter. In the thought multi-agent case, a neighbouring agent, moreover, provides a privately-designed pd forecasting the same observation. This pd may notably enrich the information of the focal agent. Bayes' rule is a unique deductive tool for a lossless compression of the information brought by the observations. It does not suit to processing of the forecasting pd. The paper extends solutions of this case. It: a) refines the Bayes'-rule-like use of the neighbour's forecasting pd. b) deductively complements former solutions so that the learnable neighbour's reliability can be taken into account. c) specialises the result to the exponential family, which shows the high potential of this information processing. d) cares about exploiting population statistics.
Název v anglickém jazyce
Fusion of Probabilistic Unreliable Indirect Information into Estimation Serving to Decision Making
Popis výsledku anglicky
Bayesian decision making (DM) quantifies information by the probability density (pd) of treated variables. Gradual accumulation of information during acting increases the DM quality reachable by an agent exploiting it. The inspected accumulation way uses a parametric model forecasting observable DM outcomes and updates the posterior pd of its unknown parameter. In the thought multi-agent case, a neighbouring agent, moreover, provides a privately-designed pd forecasting the same observation. This pd may notably enrich the information of the focal agent. Bayes' rule is a unique deductive tool for a lossless compression of the information brought by the observations. It does not suit to processing of the forecasting pd. The paper extends solutions of this case. It: a) refines the Bayes'-rule-like use of the neighbour's forecasting pd. b) deductively complements former solutions so that the learnable neighbour's reliability can be taken into account. c) specialises the result to the exponential family, which shows the high potential of this information processing. d) cares about exploiting population statistics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTC18075" target="_blank" >LTC18075: Distribuované racionální rozhodování: kooperační aspekty</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Machine Learning and Cybernetics
ISSN
1868-8071
e-ISSN
1868-808X
Svazek periodika
12
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
19
Strana od-do
3367-3378
Kód UT WoS článku
000665682400001
EID výsledku v databázi Scopus
2-s2.0-85117794760