Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fusion of Probabilistic Unreliable Indirect Information into Estimation Serving to Decision Making

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00543464" target="_blank" >RIV/67985556:_____/21:00543464 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s13042-021-01359-9" target="_blank" >https://link.springer.com/article/10.1007/s13042-021-01359-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13042-021-01359-9" target="_blank" >10.1007/s13042-021-01359-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fusion of Probabilistic Unreliable Indirect Information into Estimation Serving to Decision Making

  • Popis výsledku v původním jazyce

    Bayesian decision making (DM) quantifies information by the probability density (pd) of treated variables. Gradual accumulation of information during acting increases the DM quality reachable by an agent exploiting it. The inspected accumulation way uses a parametric model forecasting observable DM outcomes and updates the posterior pd of its unknown parameter. In the thought multi-agent case, a neighbouring agent, moreover, provides a privately-designed pd forecasting the same observation. This pd may notably enrich the information of the focal agent. Bayes' rule is a unique deductive tool for a lossless compression of the information brought by the observations. It does not suit to processing of the forecasting pd. The paper extends solutions of this case. It: a) refines the Bayes'-rule-like use of the neighbour's forecasting pd. b) deductively complements former solutions so that the learnable neighbour's reliability can be taken into account. c) specialises the result to the exponential family, which shows the high potential of this information processing. d) cares about exploiting population statistics.

  • Název v anglickém jazyce

    Fusion of Probabilistic Unreliable Indirect Information into Estimation Serving to Decision Making

  • Popis výsledku anglicky

    Bayesian decision making (DM) quantifies information by the probability density (pd) of treated variables. Gradual accumulation of information during acting increases the DM quality reachable by an agent exploiting it. The inspected accumulation way uses a parametric model forecasting observable DM outcomes and updates the posterior pd of its unknown parameter. In the thought multi-agent case, a neighbouring agent, moreover, provides a privately-designed pd forecasting the same observation. This pd may notably enrich the information of the focal agent. Bayes' rule is a unique deductive tool for a lossless compression of the information brought by the observations. It does not suit to processing of the forecasting pd. The paper extends solutions of this case. It: a) refines the Bayes'-rule-like use of the neighbour's forecasting pd. b) deductively complements former solutions so that the learnable neighbour's reliability can be taken into account. c) specialises the result to the exponential family, which shows the high potential of this information processing. d) cares about exploiting population statistics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTC18075" target="_blank" >LTC18075: Distribuované racionální rozhodování: kooperační aspekty</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Machine Learning and Cybernetics

  • ISSN

    1868-8071

  • e-ISSN

    1868-808X

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    19

  • Strana od-do

    3367-3378

  • Kód UT WoS článku

    000665682400001

  • EID výsledku v databázi Scopus

    2-s2.0-85117794760