Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Trust Estimation in Forecasting-Based Knowledge Fusion

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00549011" target="_blank" >RIV/67985556:_____/21:00549011 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Trust Estimation in Forecasting-Based Knowledge Fusion

  • Popis výsledku v původním jazyce

    Inference and decision making (DM) are ultimate goals of the artificialintelligence use. Complexity of DM tasks is the main barrier of their efficient solutions. Complex tasks are solved by dividing them among cooperating agents. This requires a knowledge fusion at a solution stage. It always has to cope with uncertainty. The used Bayesianism quantifies the uncertain knowledge by a probability density (pd) of modelled variables. The knowledge accumulation evolves the posterior pd of a parameter in the parametric model of observations. Bayes’rule updates the posterior pd. It provides a lossless compression of the knowledge in the observed data. An extended Bayes’ rule enables the use of knowledge coded in a forecaster of the modelled observations supplied by an agent’sneighbour. This rule exploits a weight expressing the trust into the forecaster. The paper offers yet-missing, algorithmic, data-based choice of this weight. It applies Bayesian estimation while assuming an invariant trust weight. Simulated examples illustrate behaviour of the resulting algorithm. They inspect its sensitivity to violation of the assumed credibility invariance. This prepares solutions coping with volatile knowledge sources.

  • Název v anglickém jazyce

    Trust Estimation in Forecasting-Based Knowledge Fusion

  • Popis výsledku anglicky

    Inference and decision making (DM) are ultimate goals of the artificialintelligence use. Complexity of DM tasks is the main barrier of their efficient solutions. Complex tasks are solved by dividing them among cooperating agents. This requires a knowledge fusion at a solution stage. It always has to cope with uncertainty. The used Bayesianism quantifies the uncertain knowledge by a probability density (pd) of modelled variables. The knowledge accumulation evolves the posterior pd of a parameter in the parametric model of observations. Bayes’rule updates the posterior pd. It provides a lossless compression of the knowledge in the observed data. An extended Bayes’ rule enables the use of knowledge coded in a forecaster of the modelled observations supplied by an agent’sneighbour. This rule exploits a weight expressing the trust into the forecaster. The paper offers yet-missing, algorithmic, data-based choice of this weight. It applies Bayesian estimation while assuming an invariant trust weight. Simulated examples illustrate behaviour of the resulting algorithm. They inspect its sensitivity to violation of the assumed credibility invariance. This prepares solutions coping with volatile knowledge sources.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTC18075" target="_blank" >LTC18075: Distribuované racionální rozhodování: kooperační aspekty</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů