Assessment of sparkle and graininess in effect coatings using a high-resolution gonioreflectometer and psychophysical studies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00545738" target="_blank" >RIV/67985556:_____/21:00545738 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11998-021-00518-5" target="_blank" >https://link.springer.com/article/10.1007/s11998-021-00518-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11998-021-00518-5" target="_blank" >10.1007/s11998-021-00518-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessment of sparkle and graininess in effect coatings using a high-resolution gonioreflectometer and psychophysical studies
Popis výsledku v původním jazyce
The aim of this article is to propose a model to automatically predict visual judgement of sparkle and graininess of special effect pigments used in industrial coatings. Many applications in the paint and coatings, printing and plastics industry rely on multi-angle color measurements with the aim of properly characterizing the appearance, i.e., the color and texture of the manufactured surfaces. However, when it comes to surfaces containing effect pigments, these methods are in many cases insufficient and it is particularly texture characterization methods that are needed. There are two attributes related to texture that are commonly used: (1) diffuse coarseness or graininess and (2) sparkle or glint impression. In this paper, we analyzed visual perception of both texture attributes using two different psychophysical studies of 38 samples painted with effect coatings including different effect pigments and 31 test persons. Our previous work has shown a good agreement between a study using physical samples with one that uses high-resolution photographs of these sample surfaces. We have also compared the perceived (1) graininess and (2) sparkle with the performance of two commercial instruments that are capable of capturing both attributes. Results have shown a good correlation between the instruments’ readings and the psychophysical studies. Finally, we implemented computational models predicting these texture attributes that have a high correlation with the instrument readings as well as the psychophysical data. By linear scaling of the predicted data using instruments readings, one can use the proposed model for the prediction of graininess and both static and dynamic sparkle values.
Název v anglickém jazyce
Assessment of sparkle and graininess in effect coatings using a high-resolution gonioreflectometer and psychophysical studies
Popis výsledku anglicky
The aim of this article is to propose a model to automatically predict visual judgement of sparkle and graininess of special effect pigments used in industrial coatings. Many applications in the paint and coatings, printing and plastics industry rely on multi-angle color measurements with the aim of properly characterizing the appearance, i.e., the color and texture of the manufactured surfaces. However, when it comes to surfaces containing effect pigments, these methods are in many cases insufficient and it is particularly texture characterization methods that are needed. There are two attributes related to texture that are commonly used: (1) diffuse coarseness or graininess and (2) sparkle or glint impression. In this paper, we analyzed visual perception of both texture attributes using two different psychophysical studies of 38 samples painted with effect coatings including different effect pigments and 31 test persons. Our previous work has shown a good agreement between a study using physical samples with one that uses high-resolution photographs of these sample surfaces. We have also compared the perceived (1) graininess and (2) sparkle with the performance of two commercial instruments that are capable of capturing both attributes. Results have shown a good correlation between the instruments’ readings and the psychophysical studies. Finally, we implemented computational models predicting these texture attributes that have a high correlation with the instrument readings as well as the psychophysical data. By linear scaling of the predicted data using instruments readings, one can use the proposed model for the prediction of graininess and both static and dynamic sparkle values.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-18407S" target="_blank" >GA17-18407S: Vizuálně optimalizované měření vzhledu materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Coatings Technology and Research
ISSN
1547-0091
e-ISSN
1935-3804
Svazek periodika
18
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
1511-1530
Kód UT WoS článku
000694798900009
EID výsledku v databázi Scopus
2-s2.0-85114705645