Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On kernel-based nonlinear regression estimation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00555825" target="_blank" >RIV/67985556:_____/21:00555825 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985807:_____/21:00551774

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On kernel-based nonlinear regression estimation

  • Popis výsledku v původním jazyce

    This paper is devoted to two important kernel-based tools of nonlinear regression: the Nadaraya-Watson estimator, which can be characterized as a successful statistical method in various econometric applications, and regularization networks, which represent machine learning tools very rarely used in econometric modeling. This paper recalls both approaches and describes their common features as well as differences. For the Nadaraya-Watsonestimator, we explain its connection to the conditional expectation of the response variable. Our main contribution is numerical analysis of suitable data with an economic motivation and a comparison of the two nonlinear regression tools. Our computations reveal some tools for the Nadaraya-Watson in R software to be unreliable, others not prepared for a routine usage. On the other hand, the regression modeling by means of regularization networks is much simpler and also turns out to be more reliable in our examples. These also bring unique evidence revealing the need for a careful choice of the parameters of regularization networks

  • Název v anglickém jazyce

    On kernel-based nonlinear regression estimation

  • Popis výsledku anglicky

    This paper is devoted to two important kernel-based tools of nonlinear regression: the Nadaraya-Watson estimator, which can be characterized as a successful statistical method in various econometric applications, and regularization networks, which represent machine learning tools very rarely used in econometric modeling. This paper recalls both approaches and describes their common features as well as differences. For the Nadaraya-Watsonestimator, we explain its connection to the conditional expectation of the response variable. Our main contribution is numerical analysis of suitable data with an economic motivation and a comparison of the two nonlinear regression tools. Our computations reveal some tools for the Nadaraya-Watson in R software to be unreliable, others not prepared for a routine usage. On the other hand, the regression modeling by means of regularization networks is much simpler and also turns out to be more reliable in our examples. These also bring unique evidence revealing the need for a careful choice of the parameters of regularization networks

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-05325S" target="_blank" >GA21-05325S: Moderní neparametrické metody v ekonometrii</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    The 15th International Days of Statistics and Economics Conference Proceedings

  • ISBN

    978-80-87990-25-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    450-459

  • Název nakladatele

    Melandrium

  • Místo vydání

    Slaný

  • Místo konání akce

    Prague

  • Datum konání akce

    9. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku