Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Diagnostics for Robust Regression: Linear Versus Nonlinear Model

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00467762" target="_blank" >RIV/67985807:_____/16:00467762 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://msed.vse.cz/msed_2016/article/3-Kalina-Jan-paper.pdf" target="_blank" >https://msed.vse.cz/msed_2016/article/3-Kalina-Jan-paper.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Diagnostics for Robust Regression: Linear Versus Nonlinear Model

  • Popis výsledku v původním jazyce

    Robust statistical methods represent important tools for estimating parameters in linear as well as nonlinear econometric models. In contrary to the least squares, they do not suffer from vulnerability to the presence of outlying measurements in the data. Nevertheless, they need to be accompanied by diagnostic tools for verifying their assumptions. In this paper, we propose the asymptotic Goldfeld-Quandt test for the regression median. It allows to formulate a natural procedure for models with heteroscedastic disturbances, which is again based on the regression median. Further, we pay attention to nonlinear regression model. We focus on the nonlinear least weighted squares estimator, which is one of recently proposed robust estimators of parameters in a nonlinear regression. We study residuals of the estimator and use a numerical simulation to reveal that they can be severely heteroscedastic also for data generated from a model with homoscedastic disturbances. Thus, we give a warning that standard residuals of the robust nonlinear estimator may produce misleading results if used for the standard diagnostic tools

  • Název v anglickém jazyce

    Diagnostics for Robust Regression: Linear Versus Nonlinear Model

  • Popis výsledku anglicky

    Robust statistical methods represent important tools for estimating parameters in linear as well as nonlinear econometric models. In contrary to the least squares, they do not suffer from vulnerability to the presence of outlying measurements in the data. Nevertheless, they need to be accompanied by diagnostic tools for verifying their assumptions. In this paper, we propose the asymptotic Goldfeld-Quandt test for the regression median. It allows to formulate a natural procedure for models with heteroscedastic disturbances, which is again based on the regression median. Further, we pay attention to nonlinear regression model. We focus on the nonlinear least weighted squares estimator, which is one of recently proposed robust estimators of parameters in a nonlinear regression. We study residuals of the estimator and use a numerical simulation to reveal that they can be severely heteroscedastic also for data generated from a model with homoscedastic disturbances. Thus, we give a warning that standard residuals of the robust nonlinear estimator may produce misleading results if used for the standard diagnostic tools

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    The 10th International Days of Statistics and Economics Conference Proceedings

  • ISBN

    978-80-87990-10-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    781-790

  • Název nakladatele

    MELANDRIUM

  • Místo vydání

    Slaný

  • Místo konání akce

    Prague

  • Datum konání akce

    14. 12. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000389515100077