Three Contributions to Robust Regression Diagnostics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00456162" target="_blank" >RIV/67985807:_____/15:00456162 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.degruyter.com/view/j/jamsi.2015.11.issue-2/jamsi-2015-0013/jamsi-2015-0013.xml?format=INT" target="_blank" >http://www.degruyter.com/view/j/jamsi.2015.11.issue-2/jamsi-2015-0013/jamsi-2015-0013.xml?format=INT</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Three Contributions to Robust Regression Diagnostics
Popis výsledku v původním jazyce
Robust regression methods have been developed not only as a diagnostic tool for standard least squares estimation in statistical and econometric applications, but can be also used as self-standing regression estimation procedures. Therefore, they need tobe equipped by their own diagnostic tools. This paper is devoted to robust regression and presents three contributions to its diagnostic tools or estimating regression parameters under non-standard conditions. Firstly, we derive the Durbin-Watson test of independence of random regression errors for the regression median. The approach is based on the approximation to the exact null distribution of the test statistic. Secondly, we accompany the least trimmed squares estimator by a subjective criterion for selecting a suitable value of the trimming constant. Thirdly, we propose a robust version of the instrumental variables estimator. The new methods are illustrated on examples with real data and their advantages and limitations are discu
Název v anglickém jazyce
Three Contributions to Robust Regression Diagnostics
Popis výsledku anglicky
Robust regression methods have been developed not only as a diagnostic tool for standard least squares estimation in statistical and econometric applications, but can be also used as self-standing regression estimation procedures. Therefore, they need tobe equipped by their own diagnostic tools. This paper is devoted to robust regression and presents three contributions to its diagnostic tools or estimating regression parameters under non-standard conditions. Firstly, we derive the Durbin-Watson test of independence of random regression errors for the regression median. The approach is based on the approximation to the exact null distribution of the test statistic. Secondly, we accompany the least trimmed squares estimator by a subjective criterion for selecting a suitable value of the trimming constant. Thirdly, we propose a robust version of the instrumental variables estimator. The new methods are illustrated on examples with real data and their advantages and limitations are discu
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of applied mathematics, statistics and informatics
ISSN
1336-9180
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
10
Strana od-do
69-78
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—