Novel simulation technique of radioactive aerosol substances propagation into the motionless atmosphere suddenly disseminated by wind to surrounding environment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00545515" target="_blank" >RIV/67985556:_____/22:00545515 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0306454921005624?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0306454921005624?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.anucene.2021.108686" target="_blank" >10.1016/j.anucene.2021.108686</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Novel simulation technique of radioactive aerosol substances propagation into the motionless atmosphere suddenly disseminated by wind to surrounding environment
Popis výsledku v původním jazyce
Accidental discharges of radioactive aerosol into the motionless (calm) atmosphere are examined with aim to quantify ensuing radiological impact on population. This paper offers an advanced methodology that facilitates and accelerates the demanding modelling process in the calm region. The modelling simulates continuous, quite volatile, radioactive releases under strong variations of the atmospheric conditions by a chain of discrete Gaussian pulses. An original idea of insertion of the nested inner cycle enables to comprise the atmosphere state changes during individual pulse propagation. The radioactivity concentration in air at the calm end period becomes a quite non-Gaussian sum of the Gaussian puffs. The novel processing provides a simple and sufficiently precise estimate of its statistical properties. The processing approximates the sum by a single “super-puff” distribution of the Gaussian type. It remarkably facilitates analysis of the ensuing convective transport of the radioactivity package. Instead of many calculating runs of the convective transport for each individual puff, only one run realises. The approximation is based on Bayes’ paradigm (AB). The numerical experiments confirm the acceptability of the AB procedure under the inspected circumstances. The proposed way converts the laborious modelling of radiological fields into a feasible one. It supports practicability of the sampling based methods of uncertainty and sensitivity analyses, as well as the data assimilation methods, especially their inverse modelling techniques based on simulation of multiplex radiological trajectories.
Název v anglickém jazyce
Novel simulation technique of radioactive aerosol substances propagation into the motionless atmosphere suddenly disseminated by wind to surrounding environment
Popis výsledku anglicky
Accidental discharges of radioactive aerosol into the motionless (calm) atmosphere are examined with aim to quantify ensuing radiological impact on population. This paper offers an advanced methodology that facilitates and accelerates the demanding modelling process in the calm region. The modelling simulates continuous, quite volatile, radioactive releases under strong variations of the atmospheric conditions by a chain of discrete Gaussian pulses. An original idea of insertion of the nested inner cycle enables to comprise the atmosphere state changes during individual pulse propagation. The radioactivity concentration in air at the calm end period becomes a quite non-Gaussian sum of the Gaussian puffs. The novel processing provides a simple and sufficiently precise estimate of its statistical properties. The processing approximates the sum by a single “super-puff” distribution of the Gaussian type. It remarkably facilitates analysis of the ensuing convective transport of the radioactivity package. Instead of many calculating runs of the convective transport for each individual puff, only one run realises. The approximation is based on Bayes’ paradigm (AB). The numerical experiments confirm the acceptability of the AB procedure under the inspected circumstances. The proposed way converts the laborious modelling of radiological fields into a feasible one. It supports practicability of the sampling based methods of uncertainty and sensitivity analyses, as well as the data assimilation methods, especially their inverse modelling techniques based on simulation of multiplex radiological trajectories.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTC18075" target="_blank" >LTC18075: Distribuované racionální rozhodování: kooperační aspekty</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Nuclear Energy
ISSN
0306-4549
e-ISSN
—
Svazek periodika
165
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
108686
Kód UT WoS článku
000703444900003
EID výsledku v databázi Scopus
2-s2.0-85114834258