Fully probabilistic design for knowledge fusion between Bayesian filters under uniform disturbances
Popis výsledku
Identifikátory výsledku
Kód výsledku v IS VaVaI
Výsledek na webu
https://www.sciencedirect.com/science/article/pii/S0950705121010388
DOI - Digital Object Identifier
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fully probabilistic design for knowledge fusion between Bayesian filters under uniform disturbances
Popis výsledku v původním jazyce
This paper considers the problem of Bayesian transfer learning-based knowledge fusion between linear state-space processes driven by uniform state and observation noise processes. The target task conditions on probabilistic state predictor(s) supplied by the source filtering task(s) to improve its own state estimate. A joint model of the target and source(s) is not required and is not elicited. The resulting decision-making problem for choosing the optimal conditional target filtering distribution under incomplete modelling is solved via fully probabilistic design (FPD), i.e. via appropriate minimization of Kullback-Leibler divergence (KLD). The resulting FPD-optimal target learner is robust, in the sense that it can reject poor-quality source knowledge. In addition, the fact that this Bayesian transfer learning (BTL) scheme does not depend on a model of interaction between the source and target tasks ensures robustness to the misspecification of such a model. The latter is a problem that affects conventional transfer learning methods. The properties of the proposed BTL scheme are demonstrated via extensive simulations, and in comparison with two contemporary alternatives.
Název v anglickém jazyce
Fully probabilistic design for knowledge fusion between Bayesian filters under uniform disturbances
Popis výsledku anglicky
This paper considers the problem of Bayesian transfer learning-based knowledge fusion between linear state-space processes driven by uniform state and observation noise processes. The target task conditions on probabilistic state predictor(s) supplied by the source filtering task(s) to improve its own state estimate. A joint model of the target and source(s) is not required and is not elicited. The resulting decision-making problem for choosing the optimal conditional target filtering distribution under incomplete modelling is solved via fully probabilistic design (FPD), i.e. via appropriate minimization of Kullback-Leibler divergence (KLD). The resulting FPD-optimal target learner is robust, in the sense that it can reject poor-quality source knowledge. In addition, the fact that this Bayesian transfer learning (BTL) scheme does not depend on a model of interaction between the source and target tasks ensures robustness to the misspecification of such a model. The latter is a problem that affects conventional transfer learning methods. The properties of the proposed BTL scheme are demonstrated via extensive simulations, and in comparison with two contemporary alternatives.
Klasifikace
Druh
JSC - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Knowledge-Based System
ISSN
0950-7051
e-ISSN
1872-7409
Svazek periodika
238
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
107879
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85122230192
Základní informace
Druh výsledku
JSC - Článek v periodiku v databázi SCOPUS
OECD FORD
Statistics and probability
Rok uplatnění
2022