Bayesian transfer learning between Student-t filters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00532053" target="_blank" >RIV/67985556:_____/20:00532053 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0165168420301675" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165168420301675</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.sigpro.2020.107624" target="_blank" >10.1016/j.sigpro.2020.107624</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian transfer learning between Student-t filters
Popis výsledku v původním jazyce
The problem of sequentially transferring a data-predictive probability distribution from a source to a target Bayesian filter is addressed in this paper. In many practical settings, this transfer is incompletely modelled, since the stochastic dependence structure between the filters typically cannot be fully specified. We therefore adopt fully probabilistic design to select the optimal transfer mechanism. We relax the target observation model via a scale-mixing parameter, which proves vital in successfully transferring the first and second moments of the source data predictor. This sensitivity to the transferred second moment ensures that imprecise predictors are rejected, achieving robust transfer. Indeed, Student-t state and observation models are adopted for both learning processes, in order to handle outliers in all hidden and observed variables. A recursive outlier-robust Bayesian transfer learning algorithm is recovered via a local variational Bayes approximation. The outlier rejection and positive transfer properties of the resulting algorithm are clearly demonstrated in a simulated planar position-velocity system, as is the key property of imprecise knowledge rejection (robust transfer), unavailable in current Bayesian transfer algorithms. Performance comparison with particle filter variants demonstrates the successful convergence of our robust variational Bayes transfer learning algorithm in sequential processing.
Název v anglickém jazyce
Bayesian transfer learning between Student-t filters
Popis výsledku anglicky
The problem of sequentially transferring a data-predictive probability distribution from a source to a target Bayesian filter is addressed in this paper. In many practical settings, this transfer is incompletely modelled, since the stochastic dependence structure between the filters typically cannot be fully specified. We therefore adopt fully probabilistic design to select the optimal transfer mechanism. We relax the target observation model via a scale-mixing parameter, which proves vital in successfully transferring the first and second moments of the source data predictor. This sensitivity to the transferred second moment ensures that imprecise predictors are rejected, achieving robust transfer. Indeed, Student-t state and observation models are adopted for both learning processes, in order to handle outliers in all hidden and observed variables. A recursive outlier-robust Bayesian transfer learning algorithm is recovered via a local variational Bayes approximation. The outlier rejection and positive transfer properties of the resulting algorithm are clearly demonstrated in a simulated planar position-velocity system, as is the key property of imprecise knowledge rejection (robust transfer), unavailable in current Bayesian transfer algorithms. Performance comparison with particle filter variants demonstrates the successful convergence of our robust variational Bayes transfer learning algorithm in sequential processing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-15970S" target="_blank" >GA18-15970S: Optimální zpracování externí stochastické znalosti vyjádřené pomocí pravděpodobnostních distribucí</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Signal Processing
ISSN
0165-1684
e-ISSN
—
Svazek periodika
Volume 175
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
107624
Kód UT WoS článku
000540817100003
EID výsledku v databázi Scopus
2-s2.0-85085247688