Bayesian transfer learning between uniformly modelled Bayesian filters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00537103" target="_blank" >RIV/67985556:_____/21:00537103 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-63193-2_9" target="_blank" >http://dx.doi.org/10.1007/978-3-030-63193-2_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-63193-2_9" target="_blank" >10.1007/978-3-030-63193-2_9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian transfer learning between uniformly modelled Bayesian filters
Popis výsledku v původním jazyce
We investigate sensor network nodes that sequentially infer states with bounded values, and affected by noise that is also bounded. The transfer of knowledge between such nodes is the principal focus of this chapter. A fully Bayesian framework is adopted, in which the source knowledge is represented by a bounded data predictor, the specification of a formal conditioning mechanism between the filtering nodes is avoided, and the optimal knowledge-conditioned target state predictor is designed via optimal Bayesian decision-making (fullynprobabilistic design). We call this framework Bayesian transfer learning, and derive a sequential algorithm for pairs of interacting, bounded filters. To achieve a tractable, finite-dimensional flow, the outputs of the time step, transfer step and data step are locally projected onto parallelotopic supports. An informal variant of the transfer algorithm demonstrates both strongly positive transfer of high-quality (low variance) source knowledge--improving on a former orthotopically supported variant--as well as rejection of low-quality (high variance) source knowledge, which we call robust transfer.
Název v anglickém jazyce
Bayesian transfer learning between uniformly modelled Bayesian filters
Popis výsledku anglicky
We investigate sensor network nodes that sequentially infer states with bounded values, and affected by noise that is also bounded. The transfer of knowledge between such nodes is the principal focus of this chapter. A fully Bayesian framework is adopted, in which the source knowledge is represented by a bounded data predictor, the specification of a formal conditioning mechanism between the filtering nodes is avoided, and the optimal knowledge-conditioned target state predictor is designed via optimal Bayesian decision-making (fullynprobabilistic design). We call this framework Bayesian transfer learning, and derive a sequential algorithm for pairs of interacting, bounded filters. To achieve a tractable, finite-dimensional flow, the outputs of the time step, transfer step and data step are locally projected onto parallelotopic supports. An informal variant of the transfer algorithm demonstrates both strongly positive transfer of high-quality (low variance) source knowledge--improving on a former orthotopically supported variant--as well as rejection of low-quality (high variance) source knowledge, which we call robust transfer.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-15970S" target="_blank" >GA18-15970S: Optimální zpracování externí stochastické znalosti vyjádřené pomocí pravděpodobnostních distribucí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Informatics in Control, Automation and Robotics : 16th International Conference, ICINCO 2019 Prague, Czech Republic, July 29-31, 2019, Revised Selected Papers
ISBN
978-3-030-63192-5
Počet stran výsledku
18
Strana od-do
151-168
Počet stran knihy
193
Název nakladatele
Springer
Místo vydání
Cham
Kód UT WoS kapitoly
—