Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Knowledge Transfer in a Pair of Uniformly Modelled Bayesian Filters

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00507278" target="_blank" >RIV/67985556:_____/19:00507278 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Knowledge Transfer in a Pair of Uniformly Modelled Bayesian Filters

  • Popis výsledku v původním jazyce

    The paper presents an optimal Bayesian transfer learning technique applied to a pair of linear state-space processes driven by uniform state and observation noise processes. Contrary to conventional geometric approaches to boundedness in filtering problems, a fully Bayesian solution is adopted. This provides an approximate uniform filtering distribution and associated data predictor by processing the involved bounds via a local uniform approximation. This Bayesian handling of boundedness provides the opportunity to achieve optimal Bayesian knowledge transfer between bounded-error filtering nodes. The paper reports excellent rejection of knowledge below threshold, and positive transfer above threshold. In particular, an informal variant achieves strong transfer in this latter regime, and the paper discusses the factors which may influence the strength of this transfer.n

  • Název v anglickém jazyce

    Knowledge Transfer in a Pair of Uniformly Modelled Bayesian Filters

  • Popis výsledku anglicky

    The paper presents an optimal Bayesian transfer learning technique applied to a pair of linear state-space processes driven by uniform state and observation noise processes. Contrary to conventional geometric approaches to boundedness in filtering problems, a fully Bayesian solution is adopted. This provides an approximate uniform filtering distribution and associated data predictor by processing the involved bounds via a local uniform approximation. This Bayesian handling of boundedness provides the opportunity to achieve optimal Bayesian knowledge transfer between bounded-error filtering nodes. The paper reports excellent rejection of knowledge below threshold, and positive transfer above threshold. In particular, an informal variant achieves strong transfer in this latter regime, and the paper discusses the factors which may influence the strength of this transfer.n

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-15970S" target="_blank" >GA18-15970S: Optimální zpracování externí stochastické znalosti vyjádřené pomocí pravděpodobnostních distribucí</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů