Knowledge Transfer in a Pair of Uniformly Modelled Bayesian Filters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00507278" target="_blank" >RIV/67985556:_____/19:00507278 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Knowledge Transfer in a Pair of Uniformly Modelled Bayesian Filters
Popis výsledku v původním jazyce
The paper presents an optimal Bayesian transfer learning technique applied to a pair of linear state-space processes driven by uniform state and observation noise processes. Contrary to conventional geometric approaches to boundedness in filtering problems, a fully Bayesian solution is adopted. This provides an approximate uniform filtering distribution and associated data predictor by processing the involved bounds via a local uniform approximation. This Bayesian handling of boundedness provides the opportunity to achieve optimal Bayesian knowledge transfer between bounded-error filtering nodes. The paper reports excellent rejection of knowledge below threshold, and positive transfer above threshold. In particular, an informal variant achieves strong transfer in this latter regime, and the paper discusses the factors which may influence the strength of this transfer.n
Název v anglickém jazyce
Knowledge Transfer in a Pair of Uniformly Modelled Bayesian Filters
Popis výsledku anglicky
The paper presents an optimal Bayesian transfer learning technique applied to a pair of linear state-space processes driven by uniform state and observation noise processes. Contrary to conventional geometric approaches to boundedness in filtering problems, a fully Bayesian solution is adopted. This provides an approximate uniform filtering distribution and associated data predictor by processing the involved bounds via a local uniform approximation. This Bayesian handling of boundedness provides the opportunity to achieve optimal Bayesian knowledge transfer between bounded-error filtering nodes. The paper reports excellent rejection of knowledge below threshold, and positive transfer above threshold. In particular, an informal variant achieves strong transfer in this latter regime, and the paper discusses the factors which may influence the strength of this transfer.n
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-15970S" target="_blank" >GA18-15970S: Optimální zpracování externí stochastické znalosti vyjádřené pomocí pravděpodobnostních distribucí</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů