Characterizing Uncertainty In Decision-Making Models For Maintenance In Industry 4.0
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00558058" target="_blank" >RIV/67985556:_____/22:00558058 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Characterizing Uncertainty In Decision-Making Models For Maintenance In Industry 4.0
Popis výsledku v původním jazyce
Decision-making involves our daily life at any level, something that entails uncertainty and potential occurrence of risks of varied nature. When dealing with industrial engineering systems, effective decisions are fundamental in terms of maintenance planning and implementation. Specifically, several forms of uncertainty may affect decision-making procedures, for which adopting suitable techniques seems to be a good strategy to attain the main maintenance goals by taking into account system criticality along with decision-maker(s) opinions. A wide variety of factors contributes to uncertainty, being some of them greatly important while other ones less significant. However, all of these factors in synergy can impact the functioning of systems in a positive, neutral, or negative way. In this case, the question is whether obtaining a complete picture of such uncertainty can improve decision-making capabilities and mitigate both through-life costs and unforeseen problems. The fundamental issues include dealing with ambiguity in the maintenance decision-making process by employing numerous evaluation criteria and dealing with real-world scenarios in the maintenance environment. In this study, the Multi-Criteria Decision-Making (MCDM) approach is analysed, with particular reference to the Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (FTOPSIS), technique capable to effectively rank alternatives while dealing with uncertainty for maintenance decision-making. A final case study is developed to demonstrate the applicability of the method to the field of maintenance in industry 4.0. The proposed study may be useful in supporting intelligent and efficient decisions resulting in favorable maintenance outcomes.
Název v anglickém jazyce
Characterizing Uncertainty In Decision-Making Models For Maintenance In Industry 4.0
Popis výsledku anglicky
Decision-making involves our daily life at any level, something that entails uncertainty and potential occurrence of risks of varied nature. When dealing with industrial engineering systems, effective decisions are fundamental in terms of maintenance planning and implementation. Specifically, several forms of uncertainty may affect decision-making procedures, for which adopting suitable techniques seems to be a good strategy to attain the main maintenance goals by taking into account system criticality along with decision-maker(s) opinions. A wide variety of factors contributes to uncertainty, being some of them greatly important while other ones less significant. However, all of these factors in synergy can impact the functioning of systems in a positive, neutral, or negative way. In this case, the question is whether obtaining a complete picture of such uncertainty can improve decision-making capabilities and mitigate both through-life costs and unforeseen problems. The fundamental issues include dealing with ambiguity in the maintenance decision-making process by employing numerous evaluation criteria and dealing with real-world scenarios in the maintenance environment. In this study, the Multi-Criteria Decision-Making (MCDM) approach is analysed, with particular reference to the Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (FTOPSIS), technique capable to effectively rank alternatives while dealing with uncertainty for maintenance decision-making. A final case study is developed to demonstrate the applicability of the method to the field of maintenance in industry 4.0. The proposed study may be useful in supporting intelligent and efficient decisions resulting in favorable maintenance outcomes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 12th Workshop on Uncertainty Processing
ISBN
978-80-7378-460-7
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
1-12
Název nakladatele
MatfyzPress
Místo vydání
Prague
Místo konání akce
Kutná Hora
Datum konání akce
1. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—