Multivariate ranks based on randomized lift-interdirections
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00564920" target="_blank" >RIV/67985556:_____/22:00564920 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/22:10451089
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167947322000603?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167947322000603?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.csda.2022.107480" target="_blank" >10.1016/j.csda.2022.107480</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multivariate ranks based on randomized lift-interdirections
Popis výsledku v původním jazyce
Every multivariate sign and rank test needs a workable concept of ranks for multivariate data. Unfortunately, multidimensional spaces lack natural ordering and, consequently, there are no universally accepted ways how to rank vector observations. Existing proposals usable beyond small dimensions are very few in number, and each of them has its own advantages and drawbacks. Therefore, new multivariate ranks based on randomized lift-interdirections are presented, discussed and investigated. These naturally robust and invariant hyperplane-based ranks can be computed quickly and easily even in relatively high-dimensional spaces, and they can be used for nonparametric statistical inference in some existing optimal statistical procedures without altering their asymptotic behavior under null hypotheses or changing their performance under local alternatives. This is not only proved theoretically in case of the canonical sign and rank one-sample test for elliptically distributed observations, but also illustrated empirically in a small simulation study.
Název v anglickém jazyce
Multivariate ranks based on randomized lift-interdirections
Popis výsledku anglicky
Every multivariate sign and rank test needs a workable concept of ranks for multivariate data. Unfortunately, multidimensional spaces lack natural ordering and, consequently, there are no universally accepted ways how to rank vector observations. Existing proposals usable beyond small dimensions are very few in number, and each of them has its own advantages and drawbacks. Therefore, new multivariate ranks based on randomized lift-interdirections are presented, discussed and investigated. These naturally robust and invariant hyperplane-based ranks can be computed quickly and easily even in relatively high-dimensional spaces, and they can be used for nonparametric statistical inference in some existing optimal statistical procedures without altering their asymptotic behavior under null hypotheses or changing their performance under local alternatives. This is not only proved theoretically in case of the canonical sign and rank one-sample test for elliptically distributed observations, but also illustrated empirically in a small simulation study.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Statistics and Data Analysis
ISSN
0167-9473
e-ISSN
1872-7352
Svazek periodika
172
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
107480
Kód UT WoS článku
000796740200004
EID výsledku v databázi Scopus
2-s2.0-85127334374