Efficient Fully Distribution-Free Center-Outward Rank Tests for Multiple-Output Regression and MANOVA
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10450972" target="_blank" >RIV/00216208:11320/23:10450972 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=tyOvSTl~pM" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=tyOvSTl~pM</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/01621459.2021.2021921" target="_blank" >10.1080/01621459.2021.2021921</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Fully Distribution-Free Center-Outward Rank Tests for Multiple-Output Regression and MANOVA
Popis výsledku v původním jazyce
Extending rank-based inference to a multivariate setting such as multiple-output regression or MANOVA with unspecified d-dimensional error density has remained an open problem for more than half a century. None of the many solutions proposed so far is enjoying the combination of distribution-freeness and efficiency that makes rank-based inference a successful tool in the univariate setting. A concept of center-outward multivariate ranks and signs based on measure transportation ideas has been introduced recently. Center-outward ranks and signs are not only distribution-free but achieve in dimension d > 1 the (essential) maximal ancillarity property of traditional univariate ranks. In the present case, we show that fully distribution-free testing procedures based on center-outward ranks can achieve parametric efficiency. We establish the Hajek representation and asymptotic normality results required in the construction of such tests in multiple-output regression and MANOVA models. Simulations and an empirical study demonstrate the excellent performance of the proposed procedures.
Název v anglickém jazyce
Efficient Fully Distribution-Free Center-Outward Rank Tests for Multiple-Output Regression and MANOVA
Popis výsledku anglicky
Extending rank-based inference to a multivariate setting such as multiple-output regression or MANOVA with unspecified d-dimensional error density has remained an open problem for more than half a century. None of the many solutions proposed so far is enjoying the combination of distribution-freeness and efficiency that makes rank-based inference a successful tool in the univariate setting. A concept of center-outward multivariate ranks and signs based on measure transportation ideas has been introduced recently. Center-outward ranks and signs are not only distribution-free but achieve in dimension d > 1 the (essential) maximal ancillarity property of traditional univariate ranks. In the present case, we show that fully distribution-free testing procedures based on center-outward ranks can achieve parametric efficiency. We establish the Hajek representation and asymptotic normality results required in the construction of such tests in multiple-output regression and MANOVA models. Simulations and an empirical study demonstrate the excellent performance of the proposed procedures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the American Statistical Association
ISSN
0162-1459
e-ISSN
1537-274X
Svazek periodika
118
Číslo periodika v rámci svazku
543
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
1923-1939
Kód UT WoS článku
000784656000001
EID výsledku v databázi Scopus
2-s2.0-85129555529