Using Poisson proximity-based weights for traffic flow state prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00575836" target="_blank" >RIV/67985556:_____/23:00575836 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21260/23:00368479
Výsledek na webu
<a href="http://nnw.cz/doi/2023/NNW.2023.33.017.pdf" target="_blank" >http://nnw.cz/doi/2023/NNW.2023.33.017.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2023.33.017" target="_blank" >10.14311/NNW.2023.33.017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Poisson proximity-based weights for traffic flow state prediction
Popis výsledku v původním jazyce
The development of traffic state prediction algorithms embedded in intelligent transportation systems is of great importance for improving traffic conditions for drivers and pedestrians. Despite the large number of prediction methods, existing limitations still confirm the need to find a systematic solution and its adaptation to specific traffic data. This paper focuses on the relationship between traffic flow states in different urban locations, where these states are identified as clusters of traffic counts. Extending the recursive Bayesian mixture estimation theory to the Poisson mixtures, the paper uses the mixture pointers to construct the traffic state prediction model. Using the predictive model, the cluster at the target urban location is predicted based on the traffic counts measured in real time at the explanatory urban location. The main contributions of this study are: (i) recursive identification and prediction of the traffic state at each time instant, (ii) straightforward Poisson mixture initialization, and (iii) systematic theoretical background of the prediction approach. Results of testing the prediction algorithm on real traffic counts are presented.
Název v anglickém jazyce
Using Poisson proximity-based weights for traffic flow state prediction
Popis výsledku anglicky
The development of traffic state prediction algorithms embedded in intelligent transportation systems is of great importance for improving traffic conditions for drivers and pedestrians. Despite the large number of prediction methods, existing limitations still confirm the need to find a systematic solution and its adaptation to specific traffic data. This paper focuses on the relationship between traffic flow states in different urban locations, where these states are identified as clusters of traffic counts. Extending the recursive Bayesian mixture estimation theory to the Poisson mixtures, the paper uses the mixture pointers to construct the traffic state prediction model. Using the predictive model, the cluster at the target urban location is predicted based on the traffic counts measured in real time at the explanatory urban location. The main contributions of this study are: (i) recursive identification and prediction of the traffic state at each time instant, (ii) straightforward Poisson mixture initialization, and (iii) systematic theoretical background of the prediction approach. Results of testing the prediction algorithm on real traffic counts are presented.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/8A21009" target="_blank" >8A21009: Embedded storage elements on next MCU generation ready for AI on the edge</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
25
Strana od-do
291-315
Kód UT WoS článku
001075119400005
EID výsledku v databázi Scopus
2-s2.0-85175788005