CNN Ensemble Robust to Rotation Using Radon Transform
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00577116" target="_blank" >RIV/67985556:_____/23:00577116 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/IPTA59101.2023.10320086" target="_blank" >http://dx.doi.org/10.1109/IPTA59101.2023.10320086</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IPTA59101.2023.10320086" target="_blank" >10.1109/IPTA59101.2023.10320086</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CNN Ensemble Robust to Rotation Using Radon Transform
Popis výsledku v původním jazyce
A great deal of attention has been paid to alternative techniques to data augmentation in the literature. Their goal is to make convolutional neural networks (CNNs) invariant or at least robust to various transformations. In this paper, we present an ensemble model combining a classic CNN with an invariant CNNnwhere both were trained without any augmentation. The goal is to preserve the performance of the classic CNN on nondeformed images (where it is supposed to classify more accurately) and the performance of the invariant CNN on deformed images (where it is the other way around). The combination is controlled by another network which outputs a coefficient that determines the fusion rule of the two networks. The auxiliary network is trained to output the coefficient depending on the intensity of the image deformation. In the experiments, we focus on rotation as a simple and most frequently studied case of transformation. In addition, we present a network invariant to rotation that is fed with the Radon transform of the input images. The performance of this network is tested on rotated MNIST and is further used in the ensemble whose performance is demonstrated on the CIFAR10- dataset.
Název v anglickém jazyce
CNN Ensemble Robust to Rotation Using Radon Transform
Popis výsledku anglicky
A great deal of attention has been paid to alternative techniques to data augmentation in the literature. Their goal is to make convolutional neural networks (CNNs) invariant or at least robust to various transformations. In this paper, we present an ensemble model combining a classic CNN with an invariant CNNnwhere both were trained without any augmentation. The goal is to preserve the performance of the classic CNN on nondeformed images (where it is supposed to classify more accurately) and the performance of the invariant CNN on deformed images (where it is the other way around). The combination is controlled by another network which outputs a coefficient that determines the fusion rule of the two networks. The auxiliary network is trained to output the coefficient depending on the intensity of the image deformation. In the experiments, we focus on rotation as a simple and most frequently studied case of transformation. In addition, we present a network invariant to rotation that is fed with the Radon transform of the input images. The performance of this network is tested on rotated MNIST and is further used in the ensemble whose performance is demonstrated on the CIFAR10- dataset.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-03921S" target="_blank" >GA21-03921S: Inverzní problémy ve zpracování obrazu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of The 12th International Conference on Image Processing Theory, Tools and Applications (IPTA 2023)
ISBN
979-8-3503-2541-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
10320086
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Paris
Datum konání akce
16. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—