Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Leaf area index estimation of pergola-trained vineyards in arid regions using classical and deep learning methods based on UAV-based RGB images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F23%3A97560" target="_blank" >RIV/60460709:41330/23:97560 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.compag.2023.107723" target="_blank" >http://dx.doi.org/10.1016/j.compag.2023.107723</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.compag.2023.107723" target="_blank" >10.1016/j.compag.2023.107723</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Leaf area index estimation of pergola-trained vineyards in arid regions using classical and deep learning methods based on UAV-based RGB images

  • Popis výsledku v původním jazyce

    Timely and accurate mapping of leaf area index (LAI) in vineyards plays an important role for management choices in precision agricultural practices. However, only a little work has been done to extract the LAI of pergola-trained vineyards using higher spatial resolution remote sensing data. The main objective of this study was to evaluate the ability of unmanned aerial vehicle (UAV) imageries to estimate the LAI of pergola-trained vineyards using shallow and deep machine learning (ML) methods. Field trials were conducted in different growth seasons in 2021 by collecting 465 LAI samples. Firstly, this study trained five classical shallow ML models and an ensemble learning model by using different spectral and textural indices calculated from UAV imageries, and the most correlated or useful features for LAI estimations in different growth stages were differentiated. Then, due to the classical ML approaches need the arduous computation of multiple indices and feature selection procedures, another ResNet-based convolutional neural network (CNN) model was constructed which can be directly fed by cropped images. Furthermore, this study introduced a new image data augmentation method which is applicable to regression problems. Results indicated that the textural indices performed better than spectral indices, while the combination of them can improve estimation results, and the ensemble learning method showed the best among classical ML models. By choosing the optimal input image size, the CNN model we constructed estimated the LAI most effectively without extracting and selecting the features manually. The proposed image data augmentation method can generate new training images with new labels by mosaicking the original ones, and the CNN model showed improved performance after using this method compared to those using only the original images, or augmented by rotation and flipping methods. This data augmentation method can be applied to other regression models to extract growth parameters of crops using remote sensing data, and we conclude that the UAV imagery and deep learning methods are promising in LAI estimations of pergola-trained vineyards.

  • Název v anglickém jazyce

    Leaf area index estimation of pergola-trained vineyards in arid regions using classical and deep learning methods based on UAV-based RGB images

  • Popis výsledku anglicky

    Timely and accurate mapping of leaf area index (LAI) in vineyards plays an important role for management choices in precision agricultural practices. However, only a little work has been done to extract the LAI of pergola-trained vineyards using higher spatial resolution remote sensing data. The main objective of this study was to evaluate the ability of unmanned aerial vehicle (UAV) imageries to estimate the LAI of pergola-trained vineyards using shallow and deep machine learning (ML) methods. Field trials were conducted in different growth seasons in 2021 by collecting 465 LAI samples. Firstly, this study trained five classical shallow ML models and an ensemble learning model by using different spectral and textural indices calculated from UAV imageries, and the most correlated or useful features for LAI estimations in different growth stages were differentiated. Then, due to the classical ML approaches need the arduous computation of multiple indices and feature selection procedures, another ResNet-based convolutional neural network (CNN) model was constructed which can be directly fed by cropped images. Furthermore, this study introduced a new image data augmentation method which is applicable to regression problems. Results indicated that the textural indices performed better than spectral indices, while the combination of them can improve estimation results, and the ensemble learning method showed the best among classical ML models. By choosing the optimal input image size, the CNN model we constructed estimated the LAI most effectively without extracting and selecting the features manually. The proposed image data augmentation method can generate new training images with new labels by mosaicking the original ones, and the CNN model showed improved performance after using this method compared to those using only the original images, or augmented by rotation and flipping methods. This data augmentation method can be applied to other regression models to extract growth parameters of crops using remote sensing data, and we conclude that the UAV imagery and deep learning methods are promising in LAI estimations of pergola-trained vineyards.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers and Electronics in Agriculture

  • ISSN

    0168-1699

  • e-ISSN

    0168-1699

  • Svazek periodika

    207

  • Číslo periodika v rámci svazku

    107723

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

    1-15

  • Kód UT WoS článku

    000991765800001

  • EID výsledku v databázi Scopus

    2-s2.0-85149177353