Governmental Anti-Covid Measures Effectiveness Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00579554" target="_blank" >RIV/67985556:_____/23:00579554 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1877050923014436?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1877050923014436?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procs.2023.10.285" target="_blank" >10.1016/j.procs.2023.10.285</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Governmental Anti-Covid Measures Effectiveness Detection
Popis výsledku v původním jazyce
We present a retrospective analysis of Czech anti-covid governmental measures' effectiveness for an unusually long three years of observation. Numerous Czech government restrictive measures illustrate this analysis applied to three years of COVID-19 data from the first three COVID-19 cases detected on 1st March 2020 till March 2023. It illustrates the course from the dramatic combat of unknown illness to resignation to country-wide measures and placing COVID-19 into a category of common nuisances. Our analysis uses the derived adaptive recursive Bayesian stochastic multidimensional Covid model-based prediction of nine essential publicly available COVID-19 data series. The COVID-19 model enables us to differentiate between effective measures and solely nuisance or antagonistic provisions and their correct or wrong timing. Our COVID model allows us to predict vital covid statistics such as the number of hospitalized, deaths, or symptomatic individuals, which can serve for daily control of anti-covid measures and the necessary precautions and formulate recommendations to control future pandemics.
Název v anglickém jazyce
Governmental Anti-Covid Measures Effectiveness Detection
Popis výsledku anglicky
We present a retrospective analysis of Czech anti-covid governmental measures' effectiveness for an unusually long three years of observation. Numerous Czech government restrictive measures illustrate this analysis applied to three years of COVID-19 data from the first three COVID-19 cases detected on 1st March 2020 till March 2023. It illustrates the course from the dramatic combat of unknown illness to resignation to country-wide measures and placing COVID-19 into a category of common nuisances. Our analysis uses the derived adaptive recursive Bayesian stochastic multidimensional Covid model-based prediction of nine essential publicly available COVID-19 data series. The COVID-19 model enables us to differentiate between effective measures and solely nuisance or antagonistic provisions and their correct or wrong timing. Our COVID model allows us to predict vital covid statistics such as the number of hospitalized, deaths, or symptomatic individuals, which can serve for daily control of anti-covid measures and the necessary precautions and formulate recommendations to control future pandemics.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-12340S" target="_blank" >GA19-12340S: Rozpoznávání povrchových materiálů při proměnlivých podmínkách optického pozorování</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Procedia Computer Science
ISSN
1877-0509
e-ISSN
—
Svazek periodika
225
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
2922-2931
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85183571431