Statistical Method Selection Matters: Vanilla Methods in Regression May Yield Misleading Results
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00583644" target="_blank" >RIV/67985556:_____/23:00583644 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/23:00583632
Výsledek na webu
<a href="http://dx.doi.org/10.32725/978-80-7694-053-6.63" target="_blank" >http://dx.doi.org/10.32725/978-80-7694-053-6.63</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.32725/978-80-7694-053-6.63" target="_blank" >10.32725/978-80-7694-053-6.63</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Statistical Method Selection Matters: Vanilla Methods in Regression May Yield Misleading Results
Popis výsledku v původním jazyce
The primary aim of this work is to illustrate the importance of the choice of the appropriate methods for the statistical analysis of economic data. Typically, there exist several alternative versions of common statistical methods for every statistical modeling tasknand the most habitually used (“vanilla”) versions may yield rather misleading results in nonstandard situations. Linear regression is considered here as the most fundamental econometric model. First, the analysis of a world tourism dataset is presented, where the number of international arrivals is modeled for 140 countries of the world as a response of 14 pillars (indicators) of the Travel and Tourism Competitiveness Index. Heteroscedasticity is clearly recognized in the dataset. However, the Aitken estimator, which would be the standard remedy in such a situation, is revealed here to be very inappropriate. Regression quantiles represent a much more suitable solution here. The second illustration with artificial data reveals standard regression quantiles to be unsuitable for data contaminated by outlying values. Their recently proposed robust version turns out to be much more appropriate. Bothnillustrations reveal that choosing suitable methods represent an important (and often difficult) part of the analysis of economic data.
Název v anglickém jazyce
Statistical Method Selection Matters: Vanilla Methods in Regression May Yield Misleading Results
Popis výsledku anglicky
The primary aim of this work is to illustrate the importance of the choice of the appropriate methods for the statistical analysis of economic data. Typically, there exist several alternative versions of common statistical methods for every statistical modeling tasknand the most habitually used (“vanilla”) versions may yield rather misleading results in nonstandard situations. Linear regression is considered here as the most fundamental econometric model. First, the analysis of a world tourism dataset is presented, where the number of international arrivals is modeled for 140 countries of the world as a response of 14 pillars (indicators) of the Travel and Tourism Competitiveness Index. Heteroscedasticity is clearly recognized in the dataset. However, the Aitken estimator, which would be the standard remedy in such a situation, is revealed here to be very inappropriate. Regression quantiles represent a much more suitable solution here. The second illustration with artificial data reveals standard regression quantiles to be unsuitable for data contaminated by outlying values. Their recently proposed robust version turns out to be much more appropriate. Bothnillustrations reveal that choosing suitable methods represent an important (and often difficult) part of the analysis of economic data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-05325S" target="_blank" >GA21-05325S: Moderní neparametrické metody v ekonometrii</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 17th International Scientific Conference INPROFORUM: Challenges and Opportunities in the Digital World
ISBN
978-80-7694-053-6
ISSN
2336-6788
e-ISSN
2336-6788
Počet stran výsledku
6
Strana od-do
5-10
Název nakladatele
University of South Bohemia in České Budějovice, Faculty of Economics
Místo vydání
České Budějovice
Místo konání akce
České Budějovice
Datum konání akce
2. 11. 2023
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—