Least Weighted Squares Quantiles Reveal How Competitiveness Contributes to Tourism Performance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00559056" target="_blank" >RIV/67985807:_____/22:00559056 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/22:10452425
Výsledek na webu
<a href="https://doi.org/10.32065/CJEF.2022.02.03" target="_blank" >https://doi.org/10.32065/CJEF.2022.02.03</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.32065/CJEF.2022.02.03" target="_blank" >10.32065/CJEF.2022.02.03</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Least Weighted Squares Quantiles Reveal How Competitiveness Contributes to Tourism Performance
Popis výsledku v původním jazyce
Standard regression quantiles, which are commonly used in heteroscedastic regression models, are highly vulnerable with respect to the presence of leverage points in the data. The aim of this paper is to propose a novel robust version of regression quantiles, which are based on the idea to assign weights to individual observations. The novel method denoted as least weighted squares quantiles (LWSQ) is applied to a world tourism dataset, where the number of international arrivals is modeled for 140 countries of the world as a response of 14 pillars (indicators) of the Travel and Tourism Competitiveness Index (TTCI). Here, the economic motivation is to investigate whether tourism competitiveness promotes tourism performance. The data analysis reveals the advantages of LWSQ. Particularly, LWSQ is able to clearly outperform standard regression quantiles in several artificially contaminated versions of the tourism dataset. From the economic point of view, the study determines countries which are not effective in transforming their competitiveness to higher levels of tourist arrivals.
Název v anglickém jazyce
Least Weighted Squares Quantiles Reveal How Competitiveness Contributes to Tourism Performance
Popis výsledku anglicky
Standard regression quantiles, which are commonly used in heteroscedastic regression models, are highly vulnerable with respect to the presence of leverage points in the data. The aim of this paper is to propose a novel robust version of regression quantiles, which are based on the idea to assign weights to individual observations. The novel method denoted as least weighted squares quantiles (LWSQ) is applied to a world tourism dataset, where the number of international arrivals is modeled for 140 countries of the world as a response of 14 pillars (indicators) of the Travel and Tourism Competitiveness Index (TTCI). Here, the economic motivation is to investigate whether tourism competitiveness promotes tourism performance. The data analysis reveals the advantages of LWSQ. Particularly, LWSQ is able to clearly outperform standard regression quantiles in several artificially contaminated versions of the tourism dataset. From the economic point of view, the study determines countries which are not effective in transforming their competitiveness to higher levels of tourist arrivals.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Finance a úvěr-Czech Journal of Economics and Finance
ISSN
0015-1920
e-ISSN
0015-1920
Svazek periodika
72
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
22
Strana od-do
150-171
Kód UT WoS článku
000810458700003
EID výsledku v databázi Scopus
2-s2.0-85135351736