Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bipartite secret sharing and staircases

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00582343" target="_blank" >RIV/67985556:_____/24:00582343 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0012365X24000402?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0012365X24000402?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.disc.2024.113909" target="_blank" >10.1016/j.disc.2024.113909</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bipartite secret sharing and staircases

  • Popis výsledku v původním jazyce

    Bipartite secret sharing schemes have a bipartite access structure in which the set of participants is divided into two parts and all participants in the same part play an equivalent role. Such a bipartite scheme can be described by a staircase: the collection of its minimal points. The complexity of a scheme is the maximal share size relative to the secret size, and the kappa-complexity of an access structure is the best lower bound provided by the entropy method. An access structure is kappa-ideal if it has kappa-complexity 1. Motivated by the abundance of open problems in this area, the main results can be summarized as follows. First, a new characterization of kappa-ideal multipartite access structures is given which offers a straightforward and simple approach to describe ideal bipartite and tripartite access structures. Second, the kappa-complexity is determined for a range of bipartite access structures, including those determined by two points, staircases with equal widths and heights, and staircases with all heights 1. Third, matching linear schemes are presented for some non-ideal cases, including staircases where all heights are 1 and all widths are equal. Finally, finding the Shannon complexity of a bipartite access structure can be considered as a discrete submodular optimization problem. An interesting and intriguing continuous version is defined which might give further insight to the large-scale behavior of these optimization problems.

  • Název v anglickém jazyce

    Bipartite secret sharing and staircases

  • Popis výsledku anglicky

    Bipartite secret sharing schemes have a bipartite access structure in which the set of participants is divided into two parts and all participants in the same part play an equivalent role. Such a bipartite scheme can be described by a staircase: the collection of its minimal points. The complexity of a scheme is the maximal share size relative to the secret size, and the kappa-complexity of an access structure is the best lower bound provided by the entropy method. An access structure is kappa-ideal if it has kappa-complexity 1. Motivated by the abundance of open problems in this area, the main results can be summarized as follows. First, a new characterization of kappa-ideal multipartite access structures is given which offers a straightforward and simple approach to describe ideal bipartite and tripartite access structures. Second, the kappa-complexity is determined for a range of bipartite access structures, including those determined by two points, staircases with equal widths and heights, and staircases with all heights 1. Third, matching linear schemes are presented for some non-ideal cases, including staircases where all heights are 1 and all widths are equal. Finally, finding the Shannon complexity of a bipartite access structure can be considered as a discrete submodular optimization problem. An interesting and intriguing continuous version is defined which might give further insight to the large-scale behavior of these optimization problems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete Mathematics

  • ISSN

    0012-365X

  • e-ISSN

    1872-681X

  • Svazek periodika

    347

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    18

  • Strana od-do

    113909

  • Kód UT WoS článku

    001173957400001

  • EID výsledku v databázi Scopus

    2-s2.0-85183938750