Bipartite secret sharing and staircases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00582343" target="_blank" >RIV/67985556:_____/24:00582343 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0012365X24000402?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0012365X24000402?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2024.113909" target="_blank" >10.1016/j.disc.2024.113909</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bipartite secret sharing and staircases
Popis výsledku v původním jazyce
Bipartite secret sharing schemes have a bipartite access structure in which the set of participants is divided into two parts and all participants in the same part play an equivalent role. Such a bipartite scheme can be described by a staircase: the collection of its minimal points. The complexity of a scheme is the maximal share size relative to the secret size, and the kappa-complexity of an access structure is the best lower bound provided by the entropy method. An access structure is kappa-ideal if it has kappa-complexity 1. Motivated by the abundance of open problems in this area, the main results can be summarized as follows. First, a new characterization of kappa-ideal multipartite access structures is given which offers a straightforward and simple approach to describe ideal bipartite and tripartite access structures. Second, the kappa-complexity is determined for a range of bipartite access structures, including those determined by two points, staircases with equal widths and heights, and staircases with all heights 1. Third, matching linear schemes are presented for some non-ideal cases, including staircases where all heights are 1 and all widths are equal. Finally, finding the Shannon complexity of a bipartite access structure can be considered as a discrete submodular optimization problem. An interesting and intriguing continuous version is defined which might give further insight to the large-scale behavior of these optimization problems.
Název v anglickém jazyce
Bipartite secret sharing and staircases
Popis výsledku anglicky
Bipartite secret sharing schemes have a bipartite access structure in which the set of participants is divided into two parts and all participants in the same part play an equivalent role. Such a bipartite scheme can be described by a staircase: the collection of its minimal points. The complexity of a scheme is the maximal share size relative to the secret size, and the kappa-complexity of an access structure is the best lower bound provided by the entropy method. An access structure is kappa-ideal if it has kappa-complexity 1. Motivated by the abundance of open problems in this area, the main results can be summarized as follows. First, a new characterization of kappa-ideal multipartite access structures is given which offers a straightforward and simple approach to describe ideal bipartite and tripartite access structures. Second, the kappa-complexity is determined for a range of bipartite access structures, including those determined by two points, staircases with equal widths and heights, and staircases with all heights 1. Third, matching linear schemes are presented for some non-ideal cases, including staircases where all heights are 1 and all widths are equal. Finally, finding the Shannon complexity of a bipartite access structure can be considered as a discrete submodular optimization problem. An interesting and intriguing continuous version is defined which might give further insight to the large-scale behavior of these optimization problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Mathematics
ISSN
0012-365X
e-ISSN
1872-681X
Svazek periodika
347
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
113909
Kód UT WoS článku
001173957400001
EID výsledku v databázi Scopus
2-s2.0-85183938750