Occupation Measure Relaxations in Variational Problems: The Role of Convexity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00586292" target="_blank" >RIV/67985556:_____/24:00586292 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21110/24:00377627 RIV/68407700:21230/24:00377627
Výsledek na webu
<a href="https://epubs.siam.org/doi/abs/10.1137/23M1557088" target="_blank" >https://epubs.siam.org/doi/abs/10.1137/23M1557088</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/23M1557088" target="_blank" >10.1137/23M1557088</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Occupation Measure Relaxations in Variational Problems: The Role of Convexity
Popis výsledku v původním jazyce
This work addresses the occupation measure relaxation of calculus of variations problems, which is an infinite-dimensional linear programming reformulation amenable to numerical approximation by a hierarchy of semidefinite optimization problems. We address the problem of equivalence of this relaxation to the original problem. Our main result provides sufficient conditions for this equivalence. These conditions, revolving around the convexity of the data, are simple and apply in very general settings that may be of arbitrary dimensions and may include pointwise and integral constraints, thereby considerably strengthening the existing results. Our conditions are also extended to optimal control problems. In addition, we demonstrate how these results can be applied in nonconvex settings, showing that the occupation measure relaxation is at least as strong as the convexification using the convex envelope, in doing so, we prove that a certain weakening of the occupation measure relaxation is equivalent to the convex envelope. This opens the way to application of the occupation measure relaxation in situations where the convex envelope relaxation is known to be equivalent to the original problem, which includes problems in magnetism and elasticity.
Název v anglickém jazyce
Occupation Measure Relaxations in Variational Problems: The Role of Convexity
Popis výsledku anglicky
This work addresses the occupation measure relaxation of calculus of variations problems, which is an infinite-dimensional linear programming reformulation amenable to numerical approximation by a hierarchy of semidefinite optimization problems. We address the problem of equivalence of this relaxation to the original problem. Our main result provides sufficient conditions for this equivalence. These conditions, revolving around the convexity of the data, are simple and apply in very general settings that may be of arbitrary dimensions and may include pointwise and integral constraints, thereby considerably strengthening the existing results. Our conditions are also extended to optimal control problems. In addition, we demonstrate how these results can be applied in nonconvex settings, showing that the occupation measure relaxation is at least as strong as the convexification using the convex envelope, in doing so, we prove that a certain weakening of the occupation measure relaxation is equivalent to the convex envelope. This opens the way to application of the occupation measure relaxation in situations where the convex envelope relaxation is known to be equivalent to the original problem, which includes problems in magnetism and elasticity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Optimization
ISSN
1052-6234
e-ISSN
1095-7189
Svazek periodika
34
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
1708-1731
Kód UT WoS článku
001228311100007
EID výsledku v databázi Scopus
2-s2.0-85194146024