Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Perceptual dimensions of wood materials

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00586421" target="_blank" >RIV/67985556:_____/24:00586421 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68081740:_____/24:00586421

  • Výsledek na webu

    <a href="https://jov.arvojournals.org/article.aspx?articleid=2793694" target="_blank" >https://jov.arvojournals.org/article.aspx?articleid=2793694</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1167/jov.24.5.12" target="_blank" >10.1167/jov.24.5.12</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Perceptual dimensions of wood materials

  • Popis výsledku v původním jazyce

    Materials exhibit an extraordinary range of visual appearances. Characterizing and quantifying appearance is important not only for basic research on perceptual mechanisms but also for computer graphics and a wide range of industrial applications. Although methods exist for capturing and representing the optical properties of materials and how they vary across surfaces (Haindl & Filip, 2013), the representations are typically very high-dimensional, and how these representations relate to subjective perceptual impressions of material appearance remains poorly understood. Here, we used a data-driven approach to characterizing the perceived appearance characteristics of 30 samples of wood veneer using a „visual fingerprint“ that describes each sample as a multidimensional feature vector, with each dimension capturing a different aspect of the appearance. Fifty-six crowd-sourced participants viewed triplets of movies depicting different wood samples as the sample rotated. Their task was to report which of the two match samples was subjectively most similar to the test sample. In another online experiment, 45 participants rated 10 wood-related appearance characteristics for each of the samples. The results reveal a consistent embedding of the samples across both experiments and a set of nine perceptual dimensions capturing aspects including the roughness, directionality, and spatial scale of the surface patterns. We also showed that a weighted linear combination of 11 image statistics, inspired by the rating characteristics, predicts perceptual dimensions well.

  • Název v anglickém jazyce

    Perceptual dimensions of wood materials

  • Popis výsledku anglicky

    Materials exhibit an extraordinary range of visual appearances. Characterizing and quantifying appearance is important not only for basic research on perceptual mechanisms but also for computer graphics and a wide range of industrial applications. Although methods exist for capturing and representing the optical properties of materials and how they vary across surfaces (Haindl & Filip, 2013), the representations are typically very high-dimensional, and how these representations relate to subjective perceptual impressions of material appearance remains poorly understood. Here, we used a data-driven approach to characterizing the perceived appearance characteristics of 30 samples of wood veneer using a „visual fingerprint“ that describes each sample as a multidimensional feature vector, with each dimension capturing a different aspect of the appearance. Fifty-six crowd-sourced participants viewed triplets of movies depicting different wood samples as the sample rotated. Their task was to report which of the two match samples was subjectively most similar to the test sample. In another online experiment, 45 participants rated 10 wood-related appearance characteristics for each of the samples. The results reveal a consistent embedding of the samples across both experiments and a set of nine perceptual dimensions capturing aspects including the roughness, directionality, and spatial scale of the surface patterns. We also showed that a weighted linear combination of 11 image statistics, inspired by the rating characteristics, predicts perceptual dimensions well.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-17529S" target="_blank" >GA22-17529S: Vizuální identifikátor vzhledu materiálů</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Vision

  • ISSN

    1534-7362

  • e-ISSN

    1534-7362

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    12

  • Kód UT WoS článku

    001281930500012

  • EID výsledku v databázi Scopus

    2-s2.0-85194126723