Approximation of multistage stochastic programming problems by smoothed quantization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00587649" target="_blank" >RIV/67985556:_____/24:00587649 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/24:10490667
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007/s11846-024-00733-5.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s11846-024-00733-5.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11846-024-00733-5" target="_blank" >10.1007/s11846-024-00733-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approximation of multistage stochastic programming problems by smoothed quantization
Popis výsledku v původním jazyce
We present an approximation technique for solving multistage stochastic programming problems with an underlying Markov stochastic process. This process is approximated by a discrete skeleton process, which is consequently smoothed down by means of the original unconditional distribution. Approximated in this way, the problem is solvable by means of Markov Stochastic Dual Dynamic Programming. We state an upper bound for the nested distance between the exact process and its approximation and discuss its convergence in the one-dimensional case. We further propose an adjustment of the approximation, which guarantees that the approximate problem is bounded. Finally, we apply our technique to a reallife production-emission trading problem and demonstrate the performance of its approximation given the “true” distribution of the random parameters.
Název v anglickém jazyce
Approximation of multistage stochastic programming problems by smoothed quantization
Popis výsledku anglicky
We present an approximation technique for solving multistage stochastic programming problems with an underlying Markov stochastic process. This process is approximated by a discrete skeleton process, which is consequently smoothed down by means of the original unconditional distribution. Approximated in this way, the problem is solvable by means of Markov Stochastic Dual Dynamic Programming. We state an upper bound for the nested distance between the exact process and its approximation and discuss its convergence in the one-dimensional case. We further propose an adjustment of the approximation, which guarantees that the approximate problem is bounded. Finally, we apply our technique to a reallife production-emission trading problem and demonstrate the performance of its approximation given the “true” distribution of the random parameters.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-07494S" target="_blank" >GA21-07494S: Účinnost politiky snižování emisí uhlíku</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Review of Managerial Science
ISSN
1863-6683
e-ISSN
1863-6691
Svazek periodika
18
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
36
Strana od-do
2079-2114
Kód UT WoS článku
001175189200001
EID výsledku v databázi Scopus
2-s2.0-85186174671