Robustness of stochastic programs with endogenous randomness via contamination
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10451911" target="_blank" >RIV/00216208:11320/23:10451911 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=QJWC-ZnjkX" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=QJWC-ZnjkX</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejor.2022.07.025" target="_blank" >10.1016/j.ejor.2022.07.025</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robustness of stochastic programs with endogenous randomness via contamination
Popis výsledku v původním jazyce
Investigating stability of stochastic programs with respect to changes in the underlying probability distributions represents an important step before deploying any model to production. Often, the uncertainty in stochastic programs is not perfectly known, thus it is approximated. The stochastic distribution's misspecification and approximation errors can affect model solution, consequently leading to suboptimal decisions. It is of utmost importance to be aware of such errors and to have an estimate of their influence on the model solution. One approach, which estimates the possible impact of such errors, is the contamination technique. The methodology studies the effect of perturbation in the probability distribution by some contaminating distribution on the optimal value of stochastic programs. Lower and upper bounds, for the optimal values of perturbed stochastic programs, have been developed for numerous types of stochastic programs with exogenous randomness. In this paper, we first extend the current results by developing a tighter lower bound applicable to wider range of problems. Thereafter, we define contamination for decision-dependent randomness stochastic programs and prove various lower and upper bounds. We split the various cases into two separate sub-classes based on whether the feasibility set is fixed or decision-dependent and discuss several tractable formulations. Finally, we illustrate the contamination results on a real example of a stochastic program with endogenous randomness from a financial industry.
Název v anglickém jazyce
Robustness of stochastic programs with endogenous randomness via contamination
Popis výsledku anglicky
Investigating stability of stochastic programs with respect to changes in the underlying probability distributions represents an important step before deploying any model to production. Often, the uncertainty in stochastic programs is not perfectly known, thus it is approximated. The stochastic distribution's misspecification and approximation errors can affect model solution, consequently leading to suboptimal decisions. It is of utmost importance to be aware of such errors and to have an estimate of their influence on the model solution. One approach, which estimates the possible impact of such errors, is the contamination technique. The methodology studies the effect of perturbation in the probability distribution by some contaminating distribution on the optimal value of stochastic programs. Lower and upper bounds, for the optimal values of perturbed stochastic programs, have been developed for numerous types of stochastic programs with exogenous randomness. In this paper, we first extend the current results by developing a tighter lower bound applicable to wider range of problems. Thereafter, we define contamination for decision-dependent randomness stochastic programs and prove various lower and upper bounds. We split the various cases into two separate sub-classes based on whether the feasibility set is fixed or decision-dependent and discuss several tractable formulations. Finally, we illustrate the contamination results on a real example of a stochastic program with endogenous randomness from a financial industry.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-28231X" target="_blank" >GX19-28231X: Dynamické modely pro digitální finance</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Operational Research
ISSN
0377-2217
e-ISSN
—
Svazek periodika
305
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
1259-1272
Kód UT WoS článku
000899357300018
EID výsledku v databázi Scopus
2-s2.0-85135340835