Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bayesian methods in neural networks for inverse atmospheric modelling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00588431" target="_blank" >RIV/67985556:_____/24:00588431 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bayesian methods in neural networks for inverse atmospheric modelling

  • Popis výsledku v původním jazyce

    Recovering a source and an amount of an emitted substance from distant measurement is an ill-posed problem. In this contribution, two methods based on Bayes theorem will be compared on a realistic toy problem with microplastics. First of them is a Bayesian neural network pretrained to mimic a lognormal process and second one is hierarchical variational model, where the parameters of the posterior distribution are modeled by a convolutional neural network. Both these approaches allow to incorporate spatial dependency of the locations of the source and offer an estimate of uncertainty to assess the reliability of the method.n

  • Název v anglickém jazyce

    Bayesian methods in neural networks for inverse atmospheric modelling

  • Popis výsledku anglicky

    Recovering a source and an amount of an emitted substance from distant measurement is an ill-posed problem. In this contribution, two methods based on Bayes theorem will be compared on a realistic toy problem with microplastics. First of them is a Bayesian neural network pretrained to mimic a lognormal process and second one is hierarchical variational model, where the parameters of the posterior distribution are modeled by a convolutional neural network. Both these approaches allow to incorporate spatial dependency of the locations of the source and offer an estimate of uncertainty to assess the reliability of the method.n

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA24-10400S" target="_blank" >GA24-10400S: Pokročilé bayesovské odhadování zdrojů atmosférického znečištění</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů