Bayesian methods in neural networks for inverse atmospheric modelling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00588431" target="_blank" >RIV/67985556:_____/24:00588431 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian methods in neural networks for inverse atmospheric modelling
Popis výsledku v původním jazyce
Recovering a source and an amount of an emitted substance from distant measurement is an ill-posed problem. In this contribution, two methods based on Bayes theorem will be compared on a realistic toy problem with microplastics. First of them is a Bayesian neural network pretrained to mimic a lognormal process and second one is hierarchical variational model, where the parameters of the posterior distribution are modeled by a convolutional neural network. Both these approaches allow to incorporate spatial dependency of the locations of the source and offer an estimate of uncertainty to assess the reliability of the method.n
Název v anglickém jazyce
Bayesian methods in neural networks for inverse atmospheric modelling
Popis výsledku anglicky
Recovering a source and an amount of an emitted substance from distant measurement is an ill-posed problem. In this contribution, two methods based on Bayes theorem will be compared on a realistic toy problem with microplastics. First of them is a Bayesian neural network pretrained to mimic a lognormal process and second one is hierarchical variational model, where the parameters of the posterior distribution are modeled by a convolutional neural network. Both these approaches allow to incorporate spatial dependency of the locations of the source and offer an estimate of uncertainty to assess the reliability of the method.n
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA24-10400S" target="_blank" >GA24-10400S: Pokročilé bayesovské odhadování zdrojů atmosférického znečištění</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů