Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Convex weak concordance measures and their constructions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00599050" target="_blank" >RIV/67985556:_____/24:00599050 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0165011423004864?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011423004864?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fss.2023.108841" target="_blank" >10.1016/j.fss.2023.108841</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Convex weak concordance measures and their constructions

  • Popis výsledku v původním jazyce

    Considering the framework of weak concordance measures introduced by Liebscher in 2014, we propose and study convex weak concordance measures. This class of dependence measures contains as a proper subclass the class of all convex concordance measures, introduced and studied by Mesiar et al. in 2022, and thus it also covers the well-known concordance measures as Spearman's ρ, Gini's γ and Blomqvist's β. The class of all convex weak concordance measures also contains, for example, Spearman's footrule ϕ, which is not a concordance measure. In this paper, we first introduce basic convex weak concordance measures built in general by means of a single point (u,v)∈▽={(u,v)∈]0,1[2|u≥v} and its transpose (v,u) only. Then, based on basic convex weak concordance measures and probability measures on the Borel subsets of ▽, two rather general constructions of convex weak concordance measures are proposed, discussed and exemplified. Inspired by Edwards et al., probability measures-based constructions are generalized to Borel measures on B(]0,1[2)-based constructions also allowing some infinite measures to be considered. Finally, it is shown that the presented constructions also cover the mentioned standard (convex weak) concordance measures ρ, γ, β, ϕ and provide alternative formulas for them.

  • Název v anglickém jazyce

    Convex weak concordance measures and their constructions

  • Popis výsledku anglicky

    Considering the framework of weak concordance measures introduced by Liebscher in 2014, we propose and study convex weak concordance measures. This class of dependence measures contains as a proper subclass the class of all convex concordance measures, introduced and studied by Mesiar et al. in 2022, and thus it also covers the well-known concordance measures as Spearman's ρ, Gini's γ and Blomqvist's β. The class of all convex weak concordance measures also contains, for example, Spearman's footrule ϕ, which is not a concordance measure. In this paper, we first introduce basic convex weak concordance measures built in general by means of a single point (u,v)∈▽={(u,v)∈]0,1[2|u≥v} and its transpose (v,u) only. Then, based on basic convex weak concordance measures and probability measures on the Borel subsets of ▽, two rather general constructions of convex weak concordance measures are proposed, discussed and exemplified. Inspired by Edwards et al., probability measures-based constructions are generalized to Borel measures on B(]0,1[2)-based constructions also allowing some infinite measures to be considered. Finally, it is shown that the presented constructions also cover the mentioned standard (convex weak) concordance measures ρ, γ, β, ϕ and provide alternative formulas for them.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Fuzzy Sets and Systems

  • ISSN

    0165-0114

  • e-ISSN

    1872-6801

  • Svazek periodika

    478

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    24

  • Strana od-do

    108841

  • Kód UT WoS článku

    001165967000001

  • EID výsledku v databázi Scopus

    2-s2.0-85181143323