Improving the accuracy of predictions in multivariate time series using dynamic vine copulas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00599051" target="_blank" >RIV/67985556:_____/24:00599051 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/03081079.2024.2350542" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/03081079.2024.2350542</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03081079.2024.2350542" target="_blank" >10.1080/03081079.2024.2350542</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving the accuracy of predictions in multivariate time series using dynamic vine copulas
Popis výsledku v původním jazyce
In this work, we deal with non-stationary multivariate time series, proposing a method which uses copulas to produce more accurate forecasting. The idea is to apply a copula-based approach to identify change points and then split the time series into consecutive segments based on these change points. In each segment, we define the best-fitting copula family and forecast values of the time series of each segment using the corresponding fitting copula. We apply our model to a financial data set to test the predictive power of our approach. A simulation study is also presented for a detailed illustration and assessment of our proposed methodology. Based on the results of numerical analysis, we observed that our proposed approach will help us to improve the accuracy of forecasting in comparison with other existing methods such as traditional time series forecasting as well as neural network forecasting.
Název v anglickém jazyce
Improving the accuracy of predictions in multivariate time series using dynamic vine copulas
Popis výsledku anglicky
In this work, we deal with non-stationary multivariate time series, proposing a method which uses copulas to produce more accurate forecasting. The idea is to apply a copula-based approach to identify change points and then split the time series into consecutive segments based on these change points. In each segment, we define the best-fitting copula family and forecast values of the time series of each segment using the corresponding fitting copula. We apply our model to a financial data set to test the predictive power of our approach. A simulation study is also presented for a detailed illustration and assessment of our proposed methodology. Based on the results of numerical analysis, we observed that our proposed approach will help us to improve the accuracy of forecasting in comparison with other existing methods such as traditional time series forecasting as well as neural network forecasting.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of General Systems
ISSN
0308-1079
e-ISSN
1563-5104
Svazek periodika
53
Číslo periodika v rámci svazku
7-8
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
1146-1160
Kód UT WoS článku
001233832100001
EID výsledku v databázi Scopus
2-s2.0-85194565565