Discounted fully probabilistic design of decision rules
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00599786" target="_blank" >RIV/67985556:_____/24:00599786 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020025524014920?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025524014920?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2024.121578" target="_blank" >10.1016/j.ins.2024.121578</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Discounted fully probabilistic design of decision rules
Popis výsledku v původním jazyce
Axiomatic fully probabilistic design (FPD) of optimal decision rules strictly extends the decision making (DM) theory represented by Markov decision processes (MDP). This means that any MDP task can be approximated by an explicitly found FPD task whereas many FPD tasks have no MDP equivalent. MDP and FPD model the closed loop — the coupling of an agent and its environment — via a joint probability density (pd) relating the involved random variables, referred to as behaviour. Unlike MDP, FPD quantifies agent’s aims and constraints by an ideal pd. The ideal pd is high on the desired behaviours, small on undesired behaviours and zero on forbidden ones. FPD selects the optimal decision rules as the minimiser of Kullback-Leibler’s divergence of the closed-loop-modelling pd to its ideal twin. The proximity measure choice follows from the FPD axiomatics. MDP minimises the expected total loss, which is usually the sum of discounted partial losses. The discounting reflects the decreasing importance of future losses. It also diminishes the influence of errors caused by:n▶ the imperfection of the employed environment model.n▶ roughly-expressed aims.n▶ the approximate learning and decision-rules design.nThe established FPD cannot currently account for these important features. The paper elaborates the missing discounted version of FPD. This non-trivial filling of the gap in FPD also employs an extension of dynamic programming, which is of an independent interest.
Název v anglickém jazyce
Discounted fully probabilistic design of decision rules
Popis výsledku anglicky
Axiomatic fully probabilistic design (FPD) of optimal decision rules strictly extends the decision making (DM) theory represented by Markov decision processes (MDP). This means that any MDP task can be approximated by an explicitly found FPD task whereas many FPD tasks have no MDP equivalent. MDP and FPD model the closed loop — the coupling of an agent and its environment — via a joint probability density (pd) relating the involved random variables, referred to as behaviour. Unlike MDP, FPD quantifies agent’s aims and constraints by an ideal pd. The ideal pd is high on the desired behaviours, small on undesired behaviours and zero on forbidden ones. FPD selects the optimal decision rules as the minimiser of Kullback-Leibler’s divergence of the closed-loop-modelling pd to its ideal twin. The proximity measure choice follows from the FPD axiomatics. MDP minimises the expected total loss, which is usually the sum of discounted partial losses. The discounting reflects the decreasing importance of future losses. It also diminishes the influence of errors caused by:n▶ the imperfection of the employed environment model.n▶ roughly-expressed aims.n▶ the approximate learning and decision-rules design.nThe established FPD cannot currently account for these important features. The paper elaborates the missing discounted version of FPD. This non-trivial filling of the gap in FPD also employs an extension of dynamic programming, which is of an independent interest.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Sciences
ISSN
0020-0255
e-ISSN
1872-6291
Svazek periodika
690
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
121578
Kód UT WoS článku
001369164400001
EID výsledku v databázi Scopus
2-s2.0-85207087101