3D Non‑separable Moment Invariants and Their Use in Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00602709" target="_blank" >RIV/67985556:_____/24:00602709 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s42979-024-03504-x" target="_blank" >https://link.springer.com/article/10.1007/s42979-024-03504-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s42979-024-03504-x" target="_blank" >10.1007/s42979-024-03504-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
3D Non‑separable Moment Invariants and Their Use in Neural Networks
Popis výsledku v původním jazyce
Recognition of 3D objects is an important task in many bio-medical and industrial applications. The recognition algorithms should work regardless of a particular orientation of the object in the space. In this paper, we introduce new 3D rotation moment invariants, which are composed of non-separable Appell moments. We show that non-separable moments may outperform the separable ones in terms of recognition power and robustness thanks to a better distribution of their zero surfaces over the image space. We test the numerical properties and discrimination power of the proposed invariants on three real datasets—MRI images of human brain, 3D scans of statues, and confocal microscope images of worms. We show the robustness to resampling errors improved more than twice and the recognition rate increased by 2–10 % comparing to most common descriptors. In the last section, we show how these invariants can be used in state-of-the-art neural networks for image recognition. The proposed H-NeXtA architecture improved the recognition rate by 2–5 % over the current networks.
Název v anglickém jazyce
3D Non‑separable Moment Invariants and Their Use in Neural Networks
Popis výsledku anglicky
Recognition of 3D objects is an important task in many bio-medical and industrial applications. The recognition algorithms should work regardless of a particular orientation of the object in the space. In this paper, we introduce new 3D rotation moment invariants, which are composed of non-separable Appell moments. We show that non-separable moments may outperform the separable ones in terms of recognition power and robustness thanks to a better distribution of their zero surfaces over the image space. We test the numerical properties and discrimination power of the proposed invariants on three real datasets—MRI images of human brain, 3D scans of statues, and confocal microscope images of worms. We show the robustness to resampling errors improved more than twice and the recognition rate increased by 2–10 % comparing to most common descriptors. In the last section, we show how these invariants can be used in state-of-the-art neural networks for image recognition. The proposed H-NeXtA architecture improved the recognition rate by 2–5 % over the current networks.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA24-10069S" target="_blank" >GA24-10069S: Hybridní architektury neuronových sítí pro rozpoznávání obrazu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SN Computer Science
ISSN
2662-995X
e-ISSN
2661-8907
Svazek periodika
5
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
16
Strana od-do
1166
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85211784939